Feststellungsentwurf

für

den 6-streifigen Ausbau der A 3

von Autobahnkreuz Regensburg
bis zur Anschlussstelle Rosenhof

von Betr.-km 491,640
bis Betr.-km 506,300

- Erläuterungsbericht -

| aufgestellt: Autobahndirektion Südbayern | Festgestellt nach § 17 FStrG
| Dienststelle Regensburg, den 01.08.2014 | gemäß Beschluss vom 27.04.2017
| Unzner, Ltd. Baudirektor | 31/32 – 4354.1. A 3 - 25
| Regensburg, den 30.11.2015 | Regierung der Oberpfalz

Meisel
Baudirektor
INHALTSVERZEICHNIS

0 Vorbemerkungen .. 1
0.1 Erfordernis und Umfang der Planfeststellung .. 1
0.2 Zweck des Planfeststellungsverfahrens .. 1
0.3 Gutachten/Untersuchungen .. 2
0.4 Anlass zur Tektur .. 2
1 Darstellung der Baumaßnahme .. 5
1.1 Planerische Beschreibung ... 5
1.1.1 Art und Umfang der Baumaßnahme ... 5
1.1.2 Lage im vorhandenen Straßennetz .. 5
1.1.3 Bestandteil von Bedarfs- und Ausbauplanungen .. 7
1.2 Straßenbauliche Beschreibung .. 8
1.2.1 Länge, Querschnitt .. 8
1.2.2 Vorhandene Strecken- und Verkehrscharakteristik ... 8
1.2.3 Vorgesehene Strecken- und Verkehrscharakteristik ... 9
1.3 Streckengestaltung ... 9
2 Begründung des Vorhabens .. 10
2.1 Vorgeschichte der Planung .. 10
2.2 Pflicht zur Umweltverträglichkeitsprüfung .. 12
2.3 Besonderer naturschutzfachlicher Planungsauftrag .. 12
2.4 Verkehrliche und raumordnerische Bedeutung des Vorhabens 13
2.4.1 Ziele der Raumordnung/Landesplanung und Bauleitplanung 13
2.4.2 Bestehende und zu erwartende Verkehrsverhältnisse 13
2.4.3 Verbesserung der Verkehrssicherheit ... 14
2.5 Verringerung bestehender Umweltbeeinträchtigungen 15
2.5.1 Verbesserung der Lärmsituation .. 15
2.5.2 Verbesserung der Abgassituation .. 16
2.5.3 Sanierung der Straßenentwässerung .. 16
2.6 Zwingende Gründe des überwiegend öffentlichen Interesses 17
3 Vergleich der Ausbauvarianten und Wahl der Vorzugslösung 17
3.1 Beschreibung des Untersuchungsgebietes ... 17
3.2 Nullvariante .. 21
3.3 Ausbauvarianten .. 22
3.3.1 Beschreibung der Ausbauarten .. 22
3.3.2 Beurteilung der Ausbauarten ... 22
3.4 Vorzugslösung .. 26
4 Technische Gestaltung der Baumaßnahme .. 27
4.1 Trassierung ... 27
Vorbemerkungen

0.1 Erfordernis und Umfang der Planfeststellung

Für den 6-streifigen Ausbau der Bundesautobahn A 3 vom Autobahnkreuz Regensburg bis zur Anschlussstelle Rosenhof ist nach § 17 Satz 1 des Bundesfernstraßengesetzes (FStrG) ein Planfeststellungsverfahren durchzuführen. Dabei sind die von dem Vorhaben berührten öffentlichen und privaten Belange einschließlich der Umweltverträglichkeit im Rahmen der Abwägung zu berücksichtigen.

Die Planfeststellung erstreckt sich insbesondere auf die Maßnahmen zum 6-streifigen Ausbau der Bundesautobahn inklusive der notwendigen Lärmschutzmaßnahmen, auf alle damit in Zusammenhang stehenden Folgemaßnahmen, die aufgrund des Straßenbauvorhabens notwendig werden, sowie auf die im Sinne der Naturschutzgesetze erforderlichen Vermeidungs-, Ausgleichs- und Ersatzmaßnahmen.

0.2 Zweck des Planfeststellungsverfahrens

Insbesondere wird in der Planfeststellung darüber entschieden,
- welche Grundstücke oder Grundstücksteile für das Vorhaben benötigt werden,
- wie die öffentlich-rechtlichen Beziehungen im Zusammenhang mit dem Vorhaben gestaltet werden,
- welche Folgemaßnahmen an anderen öffentlichen Verkehrswegen erforderlich werden,
- wie die Kosten bei Kreuzungsanlagen zu verteilen und die Unterhaltungskosten abzugrenzen sind und
- welche Vorkehrungen im Interesse des öffentlichen Wohles oder im Interesse der benachbarten Grundstücke dem Träger der Straßenbaulast aufzuerlegen sind.

0.3 Gutachten/Untersuchungen

Die im Erläuterungsbericht mit Nummern (z.B. [1]) zitierten Gutachten und Untersuchungen, deren Ergebnisse in die vorliegenden Planfeststellungsunterlagen eingeflossen sind, sind im Anhang zum Erläuterungsbericht aufgeführt. Sie können bei der Regierung der Oberpfalz oder der Autobahndirektion Südbayern, Dienststelle Regensburg, während der allgemeinen Dienstzeit eingesehen werden.

0.4 Anlass zur Tektur

Die Autobahndirektion Südbayern, Dienststelle Regensburg, beantragte am 08.08.2014 die Durchführung des Planfeststellungsverfahrens für den 6-streifigen Ausbau der A 3 zwischen dem AK Regensburg und der AS Rosenhof.

- Änderungen an den Lärmschutzanlagen im Bereich St. Vincent/Kasernenviertel zwischen Bau-km 495+025 und 495+195
- Änderungen an den Lärmschutzanlagen im Bereich Burgweinting zwischen Bau-km 496+060 und 496+840
- Änderung an der Lärmschutzanlage im Bereich Barbing zwischen Bau-km 500+730 und 501+400
- Änderung der Regenrückhaltebecken Nr. 2 und 3: Umplanung von Becken mit Dauerstau zu trockenfallenden Becken (Trockenbecken)
- Bauwerk BW 59 bei Bau-km 497+672, Berichtigung der Bauwerksabmessungen gem. Abstimmungen mit der DB AG
- Berücksichtigung der bestehenden Wasserversorgungsleitung DN200 im Eigentum der Gemeinde Barbing bzw. der Stadt Neutraubling bei Bau-km 501+050
- Berücksichtigung eines Fernmeldekabels der Bayernwerk AG im Bereich Bau-km 491+700 bis 492+300 und Bau-km 501+760 bis 502+495
- Berücksichtigung eines Fernmeldekabel von Kabel Deutschland bei Bau-km 505+070
- Änderung im Bereich der St 2145 bei Bau-km 501+739: der gemeinsame Geh- und Radweg zwischen Neutraubling und Barbing wird ab Bau-km 0+160 bis 0+350 durch einen 75 cm breiten Sicherheitstrennstreifen von der Fahrbahn abgerückt.

In den Ergebnislisten der Einzelpunktberechnungen der Lärmberechnung (siehe Unterlage 17.1 T, Anlage 2) wurden Änderungen aufgrund der o.g. geänderten technischen Planungen in St. Vincent/Kasernenviertel, Burgweinting und Barbing
sowie Korrekturen gem. Beiblatt zu Unterlage 17.1 T, Anlage 2.0 T vorgenommen.

Zusätzlich zu den im Feststellungsentwurf vom 01.08.2014 enthaltenen Angaben zur Umweltverträglichkeit, wurde die Unterlage 19.1.4 „Unterlagen zur Umweltverträglichkeitsprüfung“ ergänzt. Diese stellen die Angaben zur Prüfung der Umweltverträglichkeit zusammenfassend dar.

Weiterhin wurden redaktionelle Änderungen vorgenommen.

Ergänzungen vom 30.01.2017:

Die sich mit der Ergänzung der Lärmschutzwand ergebenden Änderungen sind in folgenden Unterlagen dargestellt:

- Unterlage 5.1 Blatt 3T
- Unterlage 6.1 Blatt 3T
- Unterlage 7 Blatt 3T
- Unterlage 9 Blatt 3T
- Unterlage 11
- Unterlage 17.1T
1 Darstellung der Baumaßnahme

1.1 Planerische Beschreibung

1.1.1 Art und Umfang der Baumaßnahme

Der vorliegende Feststellungsentwurf umfasst den 6-streifigen Ausbau der Bundesautobahn A 3 Nürnberg – Passau zwischen dem Autobahnkreuz (AK) Regensburg und der Anschlussstelle (AS) Rosenhof. Das Bauvorhaben erstreckt sich von Bau-km 491+640 km bis 506+300 km (Beginn und Ende der Planfeststellung). Die Baulänge beträgt 14,66 km.

Durch die Maßnahme werden, dem Bundesimmissionsschutzgesetz folgend, Ansprüche auf Lärmvorsorge ausgelöst, die umfangreiche aktive sowie passive Lärmschutzmaßnahmen erforderlich machen.

Die Bundesrepublik Deutschland ist Baulastträger der Bundesautobahn A 3. Vorhabensträger der vorliegenden Ausbaumaßnahme ist die Autobahndirektion Südbayern.

1.1.2 Lage im vorhandenen Straßennetz

Die A 3 verläuft von der niederländischen Grenze bei Elten, über das westliche Ruhrgebiet, durch den Kölner Raum, das Rhein-Main-Gebiet und Franken, in der Oberpfalz vorbei an Regensburg, durch Niederbayern nach Passau und bis zur

Die Ausbaumaßnahme liegt im Landkreis Regensburg und erstreckt sich über die kreisfreie Stadt Regensburg, die kreisangehörige Stadt Neutraubling sowie die Gemeinden Pentling, Barbing und Mintraching.

In dem für den 6-streifigen Ausbau vorgesehenen Streckenabschnitt vom AK Regensburg bis zur AS Rosenhof kreuzen folgende Straßen, Wege, Gleisanlagen und Gewässer:

<table>
<thead>
<tr>
<th>Bau- km</th>
<th>Baulastträger</th>
<th>Widmung</th>
<th>Umbaumaßnahmen erforderlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK Regensburg A 93 Holledau – Hof</td>
<td>Bundesrepublik Deutschland</td>
<td>Bundesautobahn</td>
<td>nein</td>
</tr>
<tr>
<td>Hadamarstr. / Rotsäulenweg</td>
<td>Stadt Regensburg / Gmde. Pentling</td>
<td>Gemeindestraße</td>
<td>ja</td>
</tr>
<tr>
<td>Augsburger Str. (Rs 4)</td>
<td>Stadt Regensburg</td>
<td>Kreisstraße</td>
<td>ja</td>
</tr>
<tr>
<td>Graßer Weg</td>
<td>Stadt Regensburg</td>
<td>Gemeindestraße</td>
<td>nein</td>
</tr>
<tr>
<td>Universitätsstraße</td>
<td>Stadt Regensburg</td>
<td>Gemeindestraße</td>
<td>nein</td>
</tr>
<tr>
<td>Fußweg bei der Universität</td>
<td>Freistaat Bayern</td>
<td>-</td>
<td>nein</td>
</tr>
<tr>
<td>AS Regensburg-Universität Galgenbergstraße</td>
<td>Stadt Regensburg</td>
<td>Gemeindestraße</td>
<td>nein</td>
</tr>
<tr>
<td>Unterislinger Weg (Rs 19)</td>
<td>Stadt Regensburg</td>
<td>Kreisstraße</td>
<td>ja</td>
</tr>
<tr>
<td>Markomannenstraße</td>
<td>Stadt Regensburg</td>
<td>Gemeindestraße</td>
<td>ja</td>
</tr>
<tr>
<td>AS Regensburg-Burgweinting Lanshuter/ Obertraublingerstr. (B 15)</td>
<td>Stadt Regensburg</td>
<td>Bundesstraße</td>
<td>nein</td>
</tr>
<tr>
<td>Gleisanlagen der DB AG</td>
<td>Bundesrepublik Deutschland</td>
<td>-</td>
<td>ja</td>
</tr>
<tr>
<td>Junkerstr.</td>
<td>Stadt Regensburg</td>
<td>Gemeindestraße</td>
<td>nein</td>
</tr>
<tr>
<td>AS Regensburg-Ost Max-Plank-Str. (B 15)</td>
<td>Stadt Regensburg</td>
<td>Bundesstraße</td>
<td>nein</td>
</tr>
<tr>
<td>Eisackerstr.</td>
<td>Stadt Regensburg</td>
<td>Gemeindestraße</td>
<td>ja</td>
</tr>
<tr>
<td>Kreuzhofstr.</td>
<td>Stadt Regensburg</td>
<td>Öffentl. Feld- u. Waldweg</td>
<td>ja</td>
</tr>
<tr>
<td>AS Neutraubling St 2145 (Walhallastraße)</td>
<td>Freistaat Bayern</td>
<td>Staatsstraße</td>
<td>ja</td>
</tr>
</tbody>
</table>
Erläuterungsbericht

1.1.3 Bestandteil von Bedarfs- und Ausbauplanungen

Gemäß § 1 Abs. (2) des FstrAbG entspricht der geplante Ausbau der A 3 damit den Zielsetzungen des § 1 Abs. 1 des Bundesfernstraßengesetzes (FStrG).

Zurzeit befindet sich der Bundesverkehrswegeplan in Fortschreibung. Aufgrund der hohen verkehrlichen Bedeutung der A 3 und der sich verschärfenden Stau-problematik wird erwartet, dass der Maßnahme eine hohe Priorität zugemessen wird.
1.2 Straßenbauliche Beschreibung

1.2.1 Länge, Querschnitt

Die Länge des Ausbauabschnittes beträgt, einschließlich Überleitungsstrecke vom 6-streifigen auf den bestehenden 4-streifigen Querschnitt am Bauende, 14,66 km.

Der Planung liegt ein Regelquerschnitt mit zwei jeweils 3-streifigen Richtungsstrecken zugrunde. Die Fahrhöhe erhöht sich von derzeit 11,50 m auf 14,50 m. Die Mittelstreifenbreite von 4,00 m wird wie im Bestand beibehalten. Der gewählte Querschnitt entspricht dem Regelquerschnitt RQ 36 (36 m Kronenbreite) nach den Richtlinien für die Anlage von Autobahnen (RAA, Ausgabe 2008).

Die Verlängerung der Parallelstraße am AK Regensburg in Fahrtrichtung Passau weist eine Länge von ca. 300 m auf. Der Querschnitt entspricht dem Regelquerschnitt Q 3 (RAA) mit 9,50 m Breite.

1.2.2 Vorhandene Strecken- und Verkehrsscharakteristik

Die Linienführung der A 3 ist vom AK Regensburg bis zur Unterführung der Universitätsstraße bei Bau-km 493+750 durch die Abfolge enger Radialen und großer Längsneigungen geprägt. Ab der Überführung des Unterislinger Weges bei Bau-km 495+500 bis zum Ausbauende ist die A 3 durch eine großzügige Linienführung mit geringen Längsneigungen, großen Radien und langen Geraden gekennzeichnet.

Der Verkehr ist vor allem durch einen hohen Anteil an Schwerverkehr gekennzeichnet. Die durchschnittliche tägliche Verkehrsmenge liegt im am stärksten belasteten Abschnitt, AK Regensburg bis AS Regensburg-Universität, bei rd. 69.000 Kfz/24h (gem. Straßenverkehrszählung im Auftrag des Bundesverkehrsministeriums SVZ 2010) und damit über der Belastungsgrenze für einen 4-streifigen Straßenquerschnitt. Der Schwerverkehranteil liegt im genannten Abschnitt mit rd. 15.000 Kfz/24h bei durchschnittlich 21,4 % und damit deutlich über den Durchschnitt für Autobahnen in Bayern von rd. 15 %.

Als Folgen der hohen Verkehrsbelastung insbesondere des überdurchschnittlichen Schwerverkehranteils ergeben sich beinahe täglich Stausituationen mit...
negativen Auswirkungen auf die Verkehrssicherheit (siehe hierzu auch Ziff. 2.4.3).

1.2.3 Vorgesehene Strecken- und Verkehrscharakteristik

Durch den 6-streifigen Ausbau der A 3 wird die Streckencharakteristik nicht wesentlich verändert, da die Linienführung der A 3 in Grund- und Aufriss beibehalten wird. Maßgebliche Abweichungen von den Trassierungsgrenzwerten der RAA, welche eine zum Bestand abweichende Neutrassierung erforderlich machen, liegen nicht vor (siehe Ziff. 4.1). Das Erscheinungsbild der A 3 wird sich jedoch, aufgrund der breiteren Fahrbahnen, der umfangreichen aktiven Lärmschutzeinrichtungen, der zahlreichen Schilderbrücken für die wegweisende Beschilderung und der entsprechenden Schutzeinrichtungen ändern.

Das Ausbaukonzept der A 3 sieht im Hinblick auf die sehr hohe Verkehrsbelastung, aus Gründen der Verkehrsqualität und Verkehrssicherheit einen Ausbau mit sechs Fahrstreifen und beidseitigen Seitenstreifen vor. Der 6-streifige Ausbau mit dem Regelquerschnitt RQ 36 trägt der derzeitigen Verkehrsbelastung von bis zu 69.000 Kfz/24h und der zu erwartenden Verkehrsbelastung von bis zu 81.600 Kfz/24h Rechnung. Die derzeit mangelnde Qualität des Verkehrsablaufs aufgrund fehlender Leistungsfähigkeit (siehe Ziff. 2.4.2) und die hierdurch entstehenden Defizite der Verkehrssicherheit (siehe Ziff. 2.4.3) werden durch den 6-streifigen Ausbau behoben.

Bezüglich der Wahl des Ausbauquerschnitts RQ 36 ist auf die Erläuterungen unter Ziff. 4.3.1 zu verweisen.

1.3 Streckengestaltung

Die Streckengestaltung wird maßgeblich durch zahlreiche aktive Lärmschutzanlagen und umfangreiche Straßenausstattung geprägt.

Die Gestaltung der neuen Lärmschutzanlagen entspricht in weiten Teilen der heutigen Situation im Bereich der Lärmschutzwand-/wandkombination bei Burgweinting bzw. den langgestreckten Lärmschutzwandanlagen im Bereich Barbings/Neutraubling.

Für die Bereiche mit sehr hohen Lärmschutzanlagen (Ziegetsdorf, Prüll, Gärtner-Siedlung) wird durch die Staffelung der Lärmschutzanlagen - beispielsweise über Spundwandböschung, Wall, Wand mit hochabsorbierender Verkleidung, Wand
transparent - eine optisch befriedigende Untergliederung angestrebt (siehe Unterlage 14.2 Blatt 2).

Die Straßennebenflächen werden standorttypisch bepflanzt, sofern dadurch keine Gefährdungen für die Verkehrsteilnehmer entstehen.

Mit Hilfe des landschaftspflegerischen Gestaltungskonzepts erfolgt die harmonische Einbindung der Autobahn sowie der Lärmschutzeinrichtungen in die Landschaft und eine Verminderung des technischen Eindrucks. Hierbei wird der prägende Charakter, der das Straßenbauwerk in das Landschafts-/ Stadtbild einbindenden Straßenbegleitgehölze, durch die Neugestaltung wiederhergestellt.

2 Begründung des Vorhabens

2.1 Vorgeschichte der Planung

Die A 3 wurde im vorliegenden Abschnitt im Jahre 1965 als 4-streifige Bundesautobahn mit Betonfahrbahn dem Verkehr übergeben. Zwischenzeitlich wurden folgende bauliche Änderungen in dem Streckenabschnitt vorgenommen:

- 1985: Neubau der AS Regensburg-Ost
- 1989 bis 1994: abschnittsweise Sanierung des Oberbaus in Asphalt
- 1998: Neubau der AS Regensburg Universität
- 2001: Anpassung der AS Neutraubling an die Ortsumgehung Barbing
- 2007: Anpassung der AS Burgweinting an die Franz-Josef-Strauß-Allee

Seit der Inbetriebnahme der Autobahn wurden nachfolgend aufgeführte verkehrsrechtliche Beschränkungen erforderlich:

- 1993 wurde eine Geschwindigkeitsbegrenzung auf 100 km/h zwischen AS Nittendorf und AS Regensburg-Burgweinting sowie 2004 eine Geschwindigkeitsbegrenzung auf 120 km/h (tageszeitlich begrenzt zwischen 06:00 – 20:00 Uhr) zwischen AS Regensburg-Burgweinting und AS Rosenhof angeordnet.

Die Faunistischen Untersuchungen umfassten Tiergruppen mit unterschiedlichen Lebensraumansprüchen:

- Fledermauserfassung in relevanten Bereichen.

- Geländeüberprüfung hinsichtlich Potenzialflächen geeigneter Lebensräume für die Haselmaus.

- Vogelkartierung flächendeckend für das UG.

- Erfassung von Potenzialflächen hinsichtlich geeigneter Lebensräume für Zau- neidechse und Schlingnatter.

- Amphibienkartierung auf ausgewählten Probeflächen.

- Tagfalterkartierung (v.a. in Hinsicht auf Vorkommen von Ameisenbläulingen, z.B. auf ausgewählter Probefläche östlich der AS Rosenhof).

Auf Grund der Ergebnisse der Kartierungen zum Vorentwurf und der im Frühjahr 2013 eingeführten „Hinweise zur Aufstellung naturschutzfachlicher Angaben zur speziellen artenschutzrechtlichen Prüfung in der Straßenplanung (saP)“ mit Stand 01/2013, welche das Urteil vom 14. Juli 2011 BVerwG, 9 A 12/10) berücksichtigen, in dem das Bundesverwaltungsgericht feststellt, dass § 44 Abs. 5 Satz 2 BNatSchG n.F. im Hinblick auf unvermeidbare Beeinträchtigungen nach § 44 Abs. 1 Nr. 1 BNatSchG EU-Recht entgegensteht, wurde 2013 eine vertiefende Untersuchung hinsichtlich des Vorkommens der Zauneidechse im vorhabensbedingten Eingriffsbereich durchgeführt.

Hinsichtlich Vögel wurde 2013 eine Überprüfung der zum Vorentwurf ermittelten egriffsrelevanten Vorkommen durchgeführt.

2.2 Pflicht zur Umweltverträglichkeitsprüfung

Für den geplanten Ausbau der A 3 zwischen AK Regensburg und AS Rosenhof ist gemäß § 17 FStrG i.V.m. § 3 b Abs. 1 Satz 1 UVPG und Nr. 14.3 der Anlage 1 zum Gesetz über die Umweltverträglichkeitsprüfung (UVPG) eine Umweltverträglichkeitsprüfung erforderlich. Die Feststellungsunterlagen beinhalten insgesamt die notwendigen Angaben zur Ermittlung der Umweltauswirkungen und Durchführung der UVP. Mit diesem Erläuterungsbericht (Unterlage 1) wird die nach § 6 UVPG erforderliche „allgemein verständliche nicht technische Zusammenfassung“ vorgelegt.

Zusätzlich zu den im Feststellungsentwurf vom 01.08.2014 enthaltenen Angaben zur Umweltverträglichkeit, wurde die Unterlage 19.1.4 „Unterlagen zur Umweltverträglichkeitsprüfung“ ergänzt. Diese stellen die Angaben zur Prüfung der Umweltverträglichkeit zusammenfassend dar.

2.3 Besonderer naturschutzfachlicher Planungsauftrag

Ein besonderer naturschutzfachlicher Planungsauftrag besteht nicht.
2.4 Verkehrliche und raumordnerische Bedeutung des Vorhabens

2.4.1 Ziele der Raumordnung/Landesplanung und Bauleitplanung

Im Bayerischen Landesentwicklungsprogramm (LEP) ist das Ziel definiert „die Verkehrsinfrastruktur […] in Ihrem Bestand leistungsfähig zu erhalten und durch Aus-, Um- und Neubaumaßnahmen nachhaltig zu ergänzen“. Bezüglich Straßeninfrastruktur definiert das LEP nachfolgende zwei Grundsätze:

- „Das Netz der Bundesfernstraßen […] soll leistungsfähig erhalten und bedarfsgerecht ergänzt werden."

- „Bei der Weiterentwicklung der Straßeninfrastruktur soll der Ausbau des vorhandenen Straßennetzes bevorzugt vor dem Neubau erfolgen."

Der 6-streifige Ausbau der A 3 vom AK Regensburg bis AS Rosenhof folgt den Zielen und Grundsätzen des LEP.

2.4.2 Bestehende und zu erwartende Verkehrsverhältnisse

In der folgenden Tabellen sind die Verkehrsbelastungen (DTV in Kfz/24h) des Jahres 2010 und des Prognosejahres 2030 dargestellt:

<table>
<thead>
<tr>
<th>A 3 Anschlussstelle</th>
<th>Belastung der Strecke DTV 2010 [Kfz/24Std.]</th>
<th>Prognose der Strecke DTV 2030 [Kfz/24Std.]</th>
<th>Prognose der Schwerverkehrsanteile nachts [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS Sinzing</td>
<td>52.128</td>
<td>59.000</td>
<td>18,2</td>
</tr>
<tr>
<td>AK Regensburg</td>
<td>68.910</td>
<td>81.600</td>
<td>16,9</td>
</tr>
<tr>
<td>AS Reg.-Universität</td>
<td>65.319</td>
<td>79.600</td>
<td>17,4</td>
</tr>
<tr>
<td>AS Reg.-Burgweinting</td>
<td>67.817</td>
<td>78.500</td>
<td>16,9</td>
</tr>
<tr>
<td>AS Reg.-Ost</td>
<td>60.998</td>
<td>69.000</td>
<td>18,9</td>
</tr>
<tr>
<td>AS Neutraubling</td>
<td>51.676</td>
<td>58.100</td>
<td>21,6</td>
</tr>
<tr>
<td>AS Rosenhof</td>
<td>47.633</td>
<td>53.200</td>
<td>23,0</td>
</tr>
</tbody>
</table>

Tabelle 2: Prognosebelastung DTV 2030 der A 3 und Vergleich DTV 2010

Wesentliche Faktoren der Verkehrsprognose sind die geplanten Ergänzungen im Straßennetz (B15neu bis Landshut, Verlängerung Osttangente, Umbau AS Regensburg-Nord, Sallener Regenbrücke, Ausbau der Nordgaistraße, Südumfahrung Regensburg R30neu und die geplante Umfahrung von Niedertraubling) sowie die geplanten Strukturentwicklungen (Gewerbegebietsentwicklung im Regensburger Osten).

Insgesamt wird bis zum Jahre 2030 eine Steigerung der Verkehrsbelastung um 12 -18% erwartet. Durch die hohe Verkehrsbelastung bewegt sich der Verkehr bereits heute im Bereich eines instabilen Verkehrsflusses. Die Kapazität des 4-streifigen Querschnitts ist erschöpft und wird der heutigen sowie zukünftigen Verkehrsbelastung nicht gerecht. Mit dem kapazitätssteigernden 6-streifigen Ausbau wird die Leistungsfähigkeit dieses Streckenabschnittes mit einem stabilen Verkehrsfluss wieder hergestellt und für die Zukunft gewährleistet.

2.4.3 Verbesserung der Verkehrssicherheit

Durch die hohe Verkehrsbelastung treten ständige gegenseitige Behinderungen zwischen den Verkehrsteilnehmern auf. Die Kapazität des 4-streifigen Querschnitts ist erschöpft und es kommt zur Überlastung mit häufigen Stausituationen.

Durch den kapazitätssteigernden 6-streifigen Ausbau mit durchgängigem Seitenstreifen sowie den regelkonformen Anschlüssen der Tangential- und Parallelfahrbahn am AK Regensburg in Fahrtrichtung Passau wird die Verkehrssicherheit erhöht. Durch die Erneuerung der passiven Schutzeinrichtungen gemäß den heute anzuwendenden Regeln der Technik werden etwaige Unfallfolgen vermindert und die Verkehrssicherheit verbessert.

Im Bereich des Autobahnkreuzes Regensburg bis zur Unterführung der Universitätsstraße bei Bau-km 493+750 bedingt die Trassenführung mit engen Radien zur Einhaltung der erforderlichen Haltesichtweite aus Gründen der Verkehrssicherheit eine Geschwindigkeitsbeschränkung von $V = 100 \text{ km/h}$ (siehe Ziff. 4.4). Aufgrund der örtlichen Gegebenheiten mit angrenzender bzw. naheliegender Bebauung ist eine Änderung der Trassenführung wie unter Ziff. 4.1 dargestellt nicht möglich. Wegen der dichten Abfolge von Anschlussstellen und Autobahnkreuz, ist die vorgesehene Geschwindigkeitsbeschränkung aus Gründen der Verkehrssicherheit als angemessen zu bewerten.

2.5 Verringerung bestehender Umweltbeeinträchtigungen

2.5.1 Verbesserung der Lärmsituation

An der bestehenden A 3 werden derzeit trotz vorhandener Lärmschutzanlagen Lärmpegel von 70 dB(A) tags und 60 dB(A) nachts erreicht und zum Teil über- schritten. Mit dem 6-streifigen Ausbau der A 3 werden umfangreiche aktive Lärmschutzmaßnahmen ergriffen, die eine Pegelminderung von bis zu 12 dB(A) bewirken. Insgesamt wird eine deutliche Verbesserung der Lärmsituation eintreten.

Die Verkehrslärmsituation sowie die vorgesehenen Lärmschutzmaßnahmen sind in der Unterlage 17.1 T, Erläuterungen und Ergebnisse der LärmberECHNUNG, detailliert dargestellt.
2.5.2 Verbesserung der Abgassituation

Durch den 6-streifigen Ausbau der A 3 wird der Verkehrsfluss verbessert und Staus werden vermieden. Der entfallende Stopp-and-Go-Verkehr mit sehr vielen Anfahr- und Bremsvorgängen wirkt sich positiv auf die Emissionsbelastung aus.

Durch die vorgesehenen aktiven Lärmschutzmaßnahmen (Lärmschutzwände, -wälle bzw. deren Kombination) wird für nahegelegene Siedlungsbereiche neben der Verringerung der Lärmbelastung, eine Verbesserung der Abgassituation erzielt.

2.5.3 Sanierung der Straßenentwässerung

2.6 Zwingende Gründe des überwiegend öffentlichen Interesses

Aufgrund der häufigen Stausituation in Verbindung mit der dadurch entstehenden Unfallhäufigkeit liegt der 6-streifige Ausbau der A 3 vom AK Regensburg bis zur AS Rosenhof im überwiegend öffentlichen Interesse.

3 Vergleich der Ausbauvarianten und Wahl der Vorzugslösung

3.1 Beschreibung des Untersuchungsgebietes

Siedlungsstruktur

Im UG sind weitreichend Flächennutzungen gemäß Flächennutzungsplänen (Stadt Regensburg, Gemeinden Pentling, Barbing, Mintraching und Stadt Neutraubling) ausgewiesen. Neben Wohn- und Mischgebieten befinden sich im Umfeld der A 3 vor allem Gewerbegebiete sowie im Stadtbereich Regensburg Sondergebiete (Universität, Klinikum).

Infrastruktur

Die bestehende A 3 dient als übergeordnete Verbindung zwischen Nürnberg und Passau. Sie ist eine der wichtigsten europäischen Verkehrswege und Bestandteil der Europastraße E 56. Die A 93 (AK Regensburg im Westen des UG) dient als übergeordnete Verbindung zwischen Kreuz Holledau und Weiden. Regionale bis überregionale Bedeutung mit direkten Anschlussstellen an die A 3 besitzen die Bundesstraßen B 15 (Landshut – Regensburg, AS Regensburg-Ost) und B 8 (Straubing – Regensburg, AS Rosenhof). Die St 2145 und St 2660 (vormals B 8)
besitzt verfügen mit der AS Neutraubling ebenfalls über einen Anschlussstelle an
die A 3.

Die A 3 quert zwischen Landshuter Straße und Max-Planck-Straße die Bahnlin-
nien Regensburg-München bzw. Regensburg-Passau sowie angrenzend zu den
Bahnlinien den Rangierbahnhof Regensburg-Ost (Umschlagbahnhof).

Naturräumliche Lage und Gliederung

Naturräumlich betrachtet gehört das UG im Hauptnaturraum „Unterbayerisches
Hügelland“ außerhalb des eng bebauten Stadtgebietes von Regensburg zur
Haupteinheit „Dungau“ (064) sowie südöstlich des AK Regensburg in Ausdehn-
nungen südlich der A 3 zum „Donau-Isar-Hügelland“ (062).

Das Dungau umfasst gemäß dem Arten- und Biotopschutzprogramm (ABSP) des
Landkreises Regensburg die zwei Untereinheiten „Donauauen“ (064A) und
„Gäulandschaften im Dungau“ (062C). Die Flächen im UG zählen überwiegend
t zu den Gäulandschaften (ebene, baumarme Landschaft mit fruchtbaren Böden
durch Lößablagerungen), die zwischen dem Donau-Isar-Hügelland im Süden
und den Donauauen im Norden liegen. Dabei handelt es sich um untergliederte
pleistozäne Hochterrassen der Donau, die von bis zu 6 m mächtigen Löß- und
Lößlehmdecken überlagert sind. Infolge intensiver Landwirtschaft entstand in den
vergangenen Jahrzehnten eine nahezu vollständig ausgeräumte, naturferne
Landschaft, die über kritisch […] bis stark verschmutzte(n)] Fließgewässer zur Do-
nau hin entwässert wird (ABSP LK Regensburg Ziff. 1.3).

Das Donau-Isar-Hügelland ist durch wenig bewegtes Relief gekennzeichnet. Es
herrschen tertiäre Ablagerungen vor, die auch als „Regensburger Tertiärhügel-
land“ bezeichnet werden (ABSP Stadt Regensburg). Die tertiären Ablagerungen
des Donau-Isar-Hügellandes sind reliefabhängig teilweise durch diluviale Löß-,
Lösslehm- und Decklehmschichten überlagert. In der naturräumlichen Einheit
sind ertragreiche Braunerden kennzeichnend. Infolge wird das Donau-Isar-
Hügelland bei landwirtschaftlicher Nutzung intensiv bewirtschaftet. Dabei sind vor
allem Bereiche mit anstehendem Lösslehm weitgehend ausgeräumt. Naturnahe
bzw. einstmals landschaftsprägende Lebensraumtypen sind bis auf kleine Reste
verschwunden (ABSP LK Regensburg Ziff. 1.3).
Potenzielle natürliche Vegetation

Reale Vegetation

Schutzgebiete und Schutzobjekte

Es sind keine Natura 2000-Gebiete vom Vorhaben betroffen.

Naturschutzgebiete, geschützte Landschaftsbestandteile, Naturparke und Wasserschutzgebiete liegen nicht im UG.

Naturdenkmäler finden sich im Stadtteil Ziegetsdorf (Stadt Regensburg). Es handelt sich um zwei geschützte Linden in ca. 150 und 200 m Entfernung von der A 3 (Naturdenkmal in Regensburg Nr. 27 „Linde an der Ziegetsdorfer Höhe“ und Nr. 28 „Martha-Linde“).

Das *Landschaftsschutzgebiet „Schutzverordnung im Landkreis Regensburg“* reicht im Gemeindegebiet Barbing mit einer Teilfläche in das UG.
Als gesetzlich geschützte Biotoptypen wurden erfasst (Biotoptypen gemäß Kartieranleitung LfU von 2010):
- Hecke, naturnah (WH)
- Naturnahes Feldgehölz (WO)
- Gebüsche, mesophil (WX)
- Gewässerbegleitgehölz, linear (WN)
- Feuchtgebüsche (WG)
- Einzelbäume (UE)
- Kulturbestand, aufgelassen (UK)
- Parke, Grünanlagen mit Baumbestand (UP)
- Auwald (WA)
- Sumpfwald (WQ)
- Wald, mesophil (WM)
- Großröhrichte (VH)
- Verlandungsvegetation an nicht geschützten Gewässern (VT)
- Unterwasser- und Schwimmblattvegetation (VU)
- Feuchte und nasse Hochstaudenfluren (GH)
- Großseggenriede außerhalb der Verlandungszone (GG)
- Seggen- oder binsenreiche Nasswiesen (GN)

Die Biotoptypen Feuchtgebüsche (WG), Auwald (WA), Sumpfwald (WQ), Großröhrichte (VH), Unterwasser- und Schwimmblattvegetation (VU), Feuchte und nasse Hochstaudenfluren (GH), Großseggenriede außerhalb der Verlandungszone (GG) und Seggen- oder binsenreiche Nasswiesen (GN) unterliegen dem § 30 BNatSchG.

Flächen des Überschwemmungsgebietes der Donau (Donau mit Nebengewässern) reichen in das UG. Im Stadtgebiet Regensburg hat das Überschwemmungsgebiet der Donau den rechtlichen Status „vorläufig gesichert“, bzw. bisher „ermittelt“. Die Berechnungen / Aufbereitungen der Ergebnisse für den Aubach sind bisher noch nicht komplett abgeschlossen, so dass es möglicherweise bei einem zukünftigen Festsetzungsverfahren bzw. bei der vorläufigen Sicherung zu kleinen Änderungen kommen kann (Stand: 10.02.2014 des WWA Regensburg).

Im Bereich der Autobahntrasse als auch im Umfeld sind Bodendenkmäler nachweislich bekannt bzw. es liegen Vermutungsflächen vor (im Trassenbereich selbst handelt es sich um die Bodendenkmäler Nr. D-3-7039-0260, D-3-7039-0259, D-3-7038-0412, D-3-6938-0970, D-3-6939-0027, D-3-7038-0314).
3.2 **Nullvariante**

Ein Verzicht auf das Vorhaben ist auch unter Berücksichtigung der Umweltauswirkungen und der Auswirkungen auf öffentliche und private Belange nicht geboten.

Zur Steigerung der Leistungsfähigkeit und Verbesserung der Verkehrssicherheit wurden bereits in der Vergangenheit nachfolgende verkehrsrechtliche Maßnahmen ergriffen:

- Lkw-Überholverbot zwischen AS Sinzing und AS Kirchroth in Fahrtrichtung Passau sowie zwischen AS Rosenhof und AS Laaber in Fahrtrichtung Nürnberg
- Geschwindigkeitsbegrenzung auf 100 km/h zwischen AS Nittendorf und AS Regensburg-Burgweinting
- Geschwindigkeitsbegrenzung auf 120 km/h zwischen AS Regensburg-Burgweinting und AS Rosenhof (06:00 – 20:00 Uhr)

Weiterhin erfolgte in den Jahren 1998 und 2004 die Umnutzung des Seitenstreifens zwischen AK Regensburg und AS Regensburg-Universität zur Steigerung der Leistungsfähigkeit, mit entsprechend nachteiligen Auswirkungen auf die Verkehrssicherheit, aufgrund des fehlenden Seitenstreifens (siehe hierzu auch Ziff. 4.3.1).

Mit o.g. Maßnahmen sind die Möglichkeiten durch verkehrsrechtliche Maßnahmen Leistungsfähigkeit und Verkehrssicherheit zu verbessern ausgeschöpft.

Gemäß § 3 FStrG hat der Träger der Straßenbaulast die Bundesfernstraßen in einem dem regelmäßigen Verkehrsbedürfnis genügenden Zustand zu bauen, zu unterhalten, zu erweitern oder sonst zu verbessern.

Der gegenwärtige 4-streifige Querschnitt wird der derzeitigen und künftigen Verkehrsbelastung nicht gerecht. Das prognostizierte Verkehrsaufkommen (DTV\textsubscript{2030} = 81.600 Kfz/24h) im Planfeststellungsabschnitt kann nur mit einem 6-streifigen Querschnitt verkehrssicher und zuverlässig bewältigt werden. Unüberwindbare Hindernisse sind nach aktueller Sachlage nicht feststellbar. Die Wahl eines geinger dimensionierten Regelquerschnitts oder ein Abweichen vom maßgeblichen Regelquerschnitt ist nicht geboten (siehe hierzu Ziff. 4.3.1).
3.3 Ausbauvarianten

3.3.1 Beschreibung der Ausbauarten

Grundsätzlich kommen für die 6-streifige Verbreiterung des 4-streifigen Bestandsquerschnitts zwei Ausbauvarianten in Betracht:
- symmetrischer Ausbau mit beidseitiger Verbreiterung und
- asymmetrischer Ausbau mit einseitiger Verbreiterung.

Eine Kombination der Ausbauarten symmetrischer und asymmetrischer Ausbau über Teilstrecken des Ausbauabschnitts lässt keine Vorteile erkennen. Weitere Ausbauvarianten drängen sich von der Sache her nicht auf.

3.3.2 Beurteilung der Ausbauarten

Ausbauziel

Das Ausbauziel einer verkehrssicheren und leistungsfähigen Straßengestaltung kann sowohl mit einem symmetrischen, als auch mit einem asymmetrischen Ausbau in gleichem Maße erreicht werden.
Im Allgemeinen können bei einem asymmetrischen Ausbau durch die Möglichkeit der neuen Trassierung bestehende Defizite der Trassierung (Radien, Gradienten) umfassender beseitigt werden, als dies bei einem trassengebundenen, symmetrischen Ausbau der Fall ist.

Im vorliegenden Ausbauabschnitt sind die Trassierungsgrenzwerte gemäß RAA über die gesamte Baufläche eingehalten. Lediglich die durch den Bestand vorgegebenen Radien am Beginn der Baustrecke weichen vom Mindestwert der RAA ab. Zur Einhaltung der erforderlichen Haltesichtweite ist eine Geschwindigkeitsbeschränkung von V = 100 km/h vorgesehen. Wie unter Ziff. 4.1 dargestellt, ist aufgrund der örtlichen Gegebenheiten mit angrenzender bzw. sehr nahe liegender Bebauung eine Erhöhung dieser Radien ungeachtet der gewählten Ausbauvariante nicht möglich.

Im weiteren Ausbauabschnitt liegen keine erkennbaren Defizite der Trassierung vor, so dass gleichermaßen mit symmetrischem oder asymmetrischem Ausbau eine verkehrssichere Straßengestaltung erreicht werden kann.

Bauablauf, Verkehrssicherheit

In Bezug auf die Bauabwicklung ist der asymmetrische Ausbau wegen des weitgehend ungehinderten Bau- und Verkehrsaufbaus günstiger als der beidseitige Ausbau zu bewerten, da in den bestehenden Querschnitt nicht eingegriffen werden muss und es somit zu keiner Beeinträchtigung der Kapazität kommt.

Zwangspunkte

Die Verbindung der A 3 zur A 93 am Autobahnkreuz Regensburg und die zahlreichen Anschlussstellen zum untergeordneten Netz sowie die zahlreichen kreuzenden Straßen, Schienenanlagen der Bahn AG und Gewässer sowie die hohen
Grundwasserstände im Bereich Irl bis Rosenhof stellen Zwangspunkte dar, welche ein Beibehalten der Trasse in Lage und Höhe bedingt.

Auch unterirdische Anlagen, wie zahlreiche Leitungskreuzungen in Form von Abwassersammelleitern, Wasserversorgungs- und Gasleitungen stellen Zwangspunkte dar, deren Tiefenlage und die Einhüllung in Schutzrohren unter der bestehenden Trasse eine Lage- oder Höhenänderung der Trasse der A 3 erschweren.
Auswirkungen des Vorhabens auf die Umwelt

Bezüglich der Auswirkungen des Vorhabens auf die Schutzgüter Mensch, Wasser, Luft und Klima sowie Landschaft unterscheidet sich der symmetrische vom asymmetrischen Ausbau nur unwesentlich.

Bezüglich der Auswirkungen des Vorhabens auf die Schutzgüter Boden, Kultur- und sonstige Sachgüter sowie Tiere und Pflanzen entstehen durch den symmetrischen Ausbau, aufgrund der reduzierten Flächeninanspruchnahme, deutlich geringere Auswirkungen auf die jeweiligen Schutzgüter.

Der symmetrische Ausbau stellt somit gegenüber dem asymmetrischen Ausbau die ökologischere, d.h. umweltfreundlichere Ausbauart dar.

Wirtschaftlichkeit

In Bezug auf die Wirtschaftlichkeit zeigt der symmetrische Ausbau erhebliche Vorteile:

- Der Straßenkörper der bestehenden Fahrbahn wird im Bereich der Fahrbreiten in die neue Fahrbahn integriert. Lediglich die Asphaltdeck- und Binderschicht sind im Zuge des Ausbaus zu erneuern. Die Wiederverwendung des in den 90-er Jahren bereits verstärkten Oberbaus ist als nachhaltige Bauweise zu sehen und senkt die Kosten im Vergleich zu einem kompletten Neubau erheblich.
Die zwischenzeitlichen, provisorischen Fahrbahnen und entsprechende komplexe Verkehrsführungen in mehreren Bauphasen stellen einen wirtschaftlichen Nachteil des symmetrischen Ausbaus dar.

Bei den vorliegenden Randbedingungen stellt der symmetrische Ausbau gegenüber dem asymmetrischen Ausbau insgesamt die wirtschaftlichere Ausbauart dar.

3.4 Vorzugslösung

Bei der vorliegenden Maßnahme stellt der beidseitige symmetrische Ausbau aufgrund der vorliegenden Rahmenbedingungen die wirtschaftlichste und ökologischste günstigste Variante dar. Demnach erfolgt die Verbreiterung der A 3 beidseitig unter Beibehaltung der vorhandenen Trasse.

Folgende Punkte erfordern den symmetrischen Ausbau:

- Der symmetrische Ausbau stellt in Hinblick auf die Auswirkungen des Vorhabens auf die Umwelt die eingriffsschonendere Variante dar.

- Der symmetrische Ausbau stellt die insgesamt wirtschaftlichere Ausbauart dar. Die Inanspruchnahme privaten Grundeigentums ist gegenüber dem asymmetrischen Ausbau reduziert.

- Ein späterer 6-streifiger Ausbau der A 3 wurde bereits bei der Lärmschutzwandkombination bei Burgweinting sowie dem Anschlussstellenbauwerk BW 55/2 der Anschlussstelle Regensburg-Universität berücksichtigt.

- Die A 3 verläuft ab der Anschlussstelle Regensburg-Ost geländenah, dadurch ergibt sich kein bautechnischer Vorteil der einseitigen Verbreiterung.

Für einen einseitigen asymmetrischen Ausbau ergeben sich keine wirtschaftlichen und ökologischen Vorteile. Daher wird vom AK Regensburg bis zur AS Rosenhof ein symmetrischer Ausbau ohne Änderung der Achse und Gradiente geplant. Der Ausbau wird unter Aufrechterhaltung des Verkehrs durchgeführt werden. Insbesondere während der Tageszeit (6.00 Uhr bis 22.00 Uhr) werden vier Fahrstreifen für den Verkehr zur Verfügung stehen.
4 Technische Gestaltung der Baumaßnahme

4.1 Trassierung

Bei der A 3 handelt es sich gem. den Richtlinien für integrierte Netzgestaltung (RIN 2008) um eine Bundesfernstraße der Straßenkategorie AS 0 „Fernautobahn“. Nach den Richtlinien zur Anlage von Autobahnen (RAA 2008) ergibt sich die Entwurfsklasse EKA 1 A.

Gemäß RAA sind folgende Trassierungsgrenzwerte einzuhalten:

<table>
<thead>
<tr>
<th>Grenzwerte nach RAA (EKA 1 A)</th>
<th>ungünstigste Werte der Planung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurvenradius: $R_{\text{min}} = 900$ m</td>
<td>$R = 700$ m</td>
</tr>
<tr>
<td>Übergangsbogen: $A_{\text{min}} = 300$ m</td>
<td>$A = 400$ m</td>
</tr>
<tr>
<td>Längsneigung: $s_{\text{max}} = 4,0%$</td>
<td>$S = 3,5%$</td>
</tr>
<tr>
<td>Kuppenausrundung: $H_{K,\text{min}} = 13.000$ m</td>
<td>$H_{K} = 20.150$ m</td>
</tr>
<tr>
<td>Wannenausrundung: $H_{W,\text{min}} = 8.800$ m</td>
<td>$H_{W} = 34.000$ m</td>
</tr>
<tr>
<td>Querneigung: $q_{\text{max}} = 6,0%$</td>
<td>$q_{\text{max}} = 5,0%$</td>
</tr>
<tr>
<td>$q_{\text{min}} = 2,5%$</td>
<td>$q_{\text{min}} = 2,5%$</td>
</tr>
<tr>
<td>Tangentenlänge: $T_{\text{min}} = 120$ m</td>
<td>$T = 136$ m</td>
</tr>
</tbody>
</table>

Tabelle 3: Übersicht der Entwurfselemente

Die Trassierungsgrenzwerte gem. RAA sind über die gesamte Baulänge eingehalten. Lediglich die durch den Bestand vorgegebenen Radien am Beginn der Baustrecke ($R = 700$ und 800 m) weichen vom Mindestwert der RAA ab. Eine Erhöhung dieser Radien kommt aufgrund der angrenzenden Bebauung am Ziegetsberg nicht in Betracht. Darüber hinaus würde die Erhöhung dieser Radien den Fahrkomfort nicht steigern, da aufgrund der Verflechtungsvorgänge am AK Regensburg die Geschwindigkeit zur Gewährleistung der Verkehrssicherheit ohnehin beschränkt werden muss.

4.2 Knotenpunktgestaltung

Anschlussstellen

Autobahnkreuz Regensburg

Die Verkehrsführung der am Autobahnkreuz Regensburg Ein- und Ausfahrenden entspricht nicht den heutigen Anforderungen einer verkehrssicheren Straßengestaltung.

In Fahrtrichtung Nürnberg fehlen neben dem, durch Umnutzung entfallenen Seitenstreifen, ein aufgrund der Verkehrsstärke notwendiger zweiter Ausfädelstreifen.

In Fahrtrichtung Passau mündet die Parallelfahrbahn gleichzeitig mit der Tangentialfahrbahn aus Richtung Holledau unvermittelt auf den durch Umnutzung des früheren Seitenstreifens entstandenen durchgehenden Verflechtungsstreifen. Es fehlen die Verlängerung der Parallelfahrbahn, ein der Verkehrsstärke entsprechender Einfahrtsbereich auf die A 3 sowie ein Seitenstreifen.

In Fahrtrichtung Nürnberg wird daher der Ausfahrtstyp A4 gem. RAA angeordnet.

Abbildung 1: RAA, Ausfahrtstyp A4 mit Spursubtraktion
Der Ausfahrtsbereich weist eine Länge von mind. 500 m auf. Durch die Anordnung des Ausfahrtstyps A4 wird in Fahrtrichtung Nürnberg an der Ausfahrt ein Fahrstreifen subtrahiert (Spursubtraktion).

In Fahrtrichtung Passau wird der Verkehr aus der Parallelfahrbahn und der Tangentialfahrbahn aus Richtung Holledau mit Einfahrtstyp ER2 zusammengefasst.

Abbildung 2: RAA, Einfahrtstyp ER2

Nachdem die Tangentialfahrbahn den Querschnitt Q2 (2-streifig) aufweist beträgt die Länge des Einfahrtsbereichs mind. 300 m.

Anschließend wird der Verkehr der Parallelfahrbahn mit dem der A 3 durch den Einfahrtstyp E5 auf die BAB geführt.

Abbildung 3: RAA, Einfahrtstyp E5 mit Spuraddition

Der Einfahrtsbereich weist eine Länge von mind. 500 m auf. Durch die Anordnung des Einfahrtstyps E5 wird in Fahrtrichtung Passau ein Fahrtstreifen addiert (Spuraddition).
4.3 Querschnittsgestaltung

4.3.1 Querschnittselemente und -bemessung
durchgehende Fahrbahn A 3

Für die Bemessung des Querschnittes wurde der Prognoseverkehr zu Grunde gelegt. Es wird für das Jahr 2030 eine Verkehrsstärke von rund 80.000 Kfz/24h (DTV) und ein Schwerverkehrsanteil von rund 21,6 % zwischen dem AK Regensburg und der AS Regensburg-Universität prognostiziert. Entsprechend der RAA wird daher für den Ausbau der Regelquerschnitt RQ 36 mit einer Breite der zwei Richtungsfahrbahnen von je 14,50 m gewählt. Die Breite des bestehenden Mittelstreifens von 4 m wird nicht verändert.

Die Fahrbahnen werden wie folgt aufgeteilt:

Randstreifen (innen) 0,75 m
3. Fahrstreifen 3,50 m
2. Fahrstreifen 3,50 m
1. Fahrstreifen 3,75 m
Randstreifen (außen) 0,50 m
Seitenstreifen 2,50 m

Der Regelquerschnitt ist in Unterlage 14.1 Blatt 1 dargestellt.

Die geplante Breite des Mittelstreifens von 4 m entspricht dem Regelquerschnitt RQ 36 nach RAA und wird der Verkehrsbedeutung der A 3 gerecht. Neben der Richtungstrennung haben die Mittelstreifen die Aufgabe, Brückenpfeiler, Masten, Schilderbrücken und Entwässerungsanlagen aufzunehmen. Im vorliegenden Abschnitt ist eine Vielzahl dieser Anlagen zu errichten.

Seitenstreifen sind aus Gründen der Verkehrssicherheit und des Betriebsdienstes unabdingbarer Bestandteil von Autobahnquerschnitten. Seitenstreifen ermöglichen in Notfällen ein Anhalten der Pannen-/ Unfallfahrzeuge ohne Behinderung des fließenden Verkehrs. Die Nutzung der Seitenstreifen ermöglichen Arbeiten des Straßenbetriebsdienstes ohne Behinderung des fließenden Verkehrs und erleichtern die provisorische Verkehrsführung bei Unfällen oder Verengung der...

Abweichungen von dem standardisierten Querschnitt RQ 36 nach RAA sind hier nicht geboten.

Parallelfahrbahn am AK Regensburg in Fahrtrichtung Passau

Für die Bemessung des Querschnittes wurde der Prognoseverkehr zu Grunde gelegt. Es wird für das Jahr 2030 eine Verkehrsstärke von rund 2.390 Kfz/h (Morgenspitze) prognostiziert. Entsprechend der RAA wird daher für den Ausbau der Rampenquerschnitt Q3 mit einer Breite von je 9,50 m gewählt.

Die Fahrbahn wird wie folgt aufgeteilt:

- Randstreifen (innen) 0,25 m
- 2. Fahrstreifen 3,50 m
- 1. Fahrstreifen 3,50 m
- Randstreifen (außen) 0,25 m
- Seitenstreifen 2,00 m

Der Regelquerschnitt ist in Unterlage 14.1 Blatt 2 dargestellt.

Verbindungsrampen

Die Anschlussstellenrampen werden mit den derzeit bestehenden Fahrbahnbreiten an die neue Hauptfahrbahn angeschlossen. Aufgrund der geringen Anschlusslängen wird auf eine Anpassung der Fahrbahnbreiten verzichtet.

4.3.2 Fahrbahnbefestigung

Die Bemessung des Fahrbahnaufbaus erfolgt nach den Richtlinien für die Standardisierung des Oberbaues von Verkehrsflächen, Ausgabe 2012 (RStO 12).

durchgehende Fahrbahnen A 3

Aufgrund der prognostizierten Verkehrsbelastung ist der Oberbau der durchgehenden Fahrbahn entsprechend der Belastungsklasse Bk 100 zu dimensionieren. Die Mindestdicke des frostssicheren Oberbaubau des beträgt 80 cm.
Aufgrund der Deckenerneuerungen der Jahre 1989 bis 1994 liegen Fahrbahnbe-
festigungen mit mindestens 80 cm frostsicheren Oberbau vor, in Hocheinbaube-
reichen mit mind. 100 cm. Über der ca. 40 cm starken Frostschutzschicht befin-
det sich durchgängig eine 15 cm starke hydraulisch gebundene Tragschicht. Die-
se wurde in Tiefeinbaubereichen mit einem 30 cm starken Asphaltpaket über-
baut. In Hocheinbaubereichen wurde die 22 cm dicke entspannte Betonfahrbahn
mit einem 21 bzw. 26 cm starkem Asphaltpaket überbaut.

Der Zustand der Asphalt- schichten wird vor der Baumaßnahme untersucht. Es
wird davon ausgegangen, dass die Fahrbahnbefestigung der Bestandsfahrstrei-
fen (zukünftig linker und mittlerer Fahrstreifen) weitestgehend erhalten werden
kann. Lediglich die Deck- und Binderschichten sind zu erneuern sowie ein Profil-
ausgleich herzustellen.

Der rechte Fahrstreifen und Seitenstreifen werden gem. der Bemessung nach
RSTO 12 nach außen angebaut.

Als Deckschicht ist in den Abschnitten von Bau-km 491+640 bis 504+735 ein
Lärmschutzbelag mit $D_{S}\text{strO} = -5 \text{ dB(A)}$ gegenüber dem Referenzwert der Richtlinie
für Lärmschutz an Straßen (RLS 90) vorgesehen. Im restlichen Streckenabschnitt
von Bau-km 504+735 bis 506+300 kommt ein lärmmindernder Belag mit $D_{S}\text{strO} =
-2 \text{ dB(A)}$ zum Einsatz.

Parallel- fahrbahn am AK Regensburg in Fahrtrichtung Passau

Der Oberbau ist entsprechend der Belastungsklasse Bk 100 zu dimensionieren.
Die Mindestdicke des frostsicheren Oberbaubaus beträgt 80 cm.

Als Deckschicht kommt ein Lärmschutzbelag mit $D_{S}\text{strO} = -5 \text{ dB(A)}$ zum Einsatz.

Verbindungs- rampen

Der Oberbau ist entsprechend der Belastungsklasse Bk 10 zu dimensionieren.
Die Mindestdicke des frostsicheren Oberbaubaus beträgt 80 cm.

Als Deckschicht kommt ein lärmmindernder Belag mit $D_{S}\text{strO} = -2 \text{ dB(A)}$ zum Ein-
satz.
4.3.3 Böschungsgestaltung

Grundsätzlich werden alle Straßenböschungen ab 2,0 m Höhe sowohl in Damm- als auch in Einschnittslagen mit einer Regelneigung von 1:1,5 ausgebildet. Unter 2,0 m Höhe beträgt nach RAA Ziff. 4.2.4 die Böschungsbreite konstant 3,00 m. Am Dammfuß wird die Ausrundung (Tangentenlänge 3,0 m) im Bedarfsfall durch eine Dammfußmulde ersetzt.

Am Beginn der Baustrecke zwischen Bau-km 491+900 bis 492+400 wird die bestehende Einschnittsböschung (braun dargestellt) aufgeweitet. Aufgrund der anstehenden Böden wird in den Aufweitungsbereichen die vorhandene Böschungsneigung von 1:2 analog zum Bestand hergestellt.

Lärmschutzwälle werden mit einer Regelneigung von 1:1,5 ausgebildet. Anliegerseitig wird zur Einbindung in das Gelände eine Ausrundung mit einer Tangentenlänge von 1,5 m vorgesehen.

Die Oberbodenandeckung beträgt bei Böschungsflächen auf denen Fahrbahnwasser versickert 20 cm, sonst 10 cm.

4.3.4 Hindernisse in den Seitenräumen

Unvermeidbare Hindernisse in den Seitenräumen, wie Schilderbrückenfundamente und -masten, Brückenwiederlager und Lärmschutzwände werden nach den Richtlinien für passive Schutzeinrichtungen (RPS) abgesichert.

4.4 Räumliche Linienführung und Sichtweiten

Haltesichtweiten im Streckenverlauf der A 3

Die Sichtweitenanalyse beschränkt sich für zweibahnige Straßen, abgesehen von Einfahrten, auf die Überprüfung der Haltesichtweiten. Für den Nachweis des Einhaltens der erforderlichen Haltesicht wird das Erkennen eines Stauendes aus voller Fahrt (V = 130 km/h) zu Grunde gelegt. Die Höhe von Aug- und Zielpunkt beträgt dabei jeweils 1,0 m über Fahrbahnoberkante.

Kritische Haltesichtweiten treten bei zweibahnigen Straßen mit Seitenstreifen in der Regel nur im Mittelstreifen auf. In der vorliegenden Planung sind im Mittelstreifen Schutzeinrichtung gemäß der Richtlinie für passiver Schutzeinrichtungen (RPS) vorgesehen. Es sind Schutzeinrichtungen mit einer maximalen Höhe von 80 cm vorgesehen. Die Kombination Kuppenausrundung mit Linkskurve ermög-
licht bei einer Aug- und Zielpunkthöhe von 1,0 m den Sichtstrahl über die Schutzeinrichtung. Im Bereich des AK Regensburg bedingen die Sichtverhältnisse in den engen Radien eine Geschwindigkeitsbeschränkung auf \(V_{zul} = 100 \text{ km/h} \).

Haltesichtweite im AK Regensburg bei der Tangentialrampe Fahrtrichtung Passau - Hof bei Bau-km 492,000

Durch den Ausfahrtstradius von 160 m muss auf dem rechten Fahrstreifen die zulässige Geschwindigkeit im Rechtsbogen auf 80 km/h beschränkt werden, um die erforderliche Haltesichtweite von 115 m bei Schutzeinrichtungen, die nicht höher als 80 cm sind, nicht zu unterschreiten.

4.5 Änderung des umliegenden Straßen- bzw. Wegenetzes

4.5.1 kreuzende Straßen und Wege

Aufgrund der erforderlichen, größeren Lichten Weiten von Überführungsbauwerke und der damit einhergehenden größeren Konstruktionshöhe der Bauwerke müssen die Gradienten folgender überführten Wege angepasst werden:

- Rotsäulenweg/Hadamarstraße
- Augsburger Straße (Rs 4)
- Unterislinger Weg (Rs 19)
- Markomannenstraße
- Eisackerstraße
- Kreuzhofstraße
- St 2145 Walhallastraße
- GVS Barbing - Oberheising
- GVS Unterheising - Oberheising
- B 8 Regensburg - Straubing

Bei der Querschnittswahl wurden etwaige Änderungsabsichten der zuständigen Straßenbaulastträger berücksichtigt. Die Querschnitte im Bauwerksbereich sind in den Lageplänen, Unterlage 5.1 Blatt 1T bis 3T, 4, 5T, 6 und 7, bei den Bau-
werksbeschreibungen schematisch dargestellt. Die Höhenpläne der kreuzenden Straßen und Wege können in Unterlage 6.2 Blatt 1T, 2T und 3-10 eingesehen werden.

Rotsäulenweg/Hadamarstraße Bau-km 491+970:

Der Rotsäulenweg bzw. die Hadamarstraße werden bei Bau-km 491+970 über die A 3 überführt. Aufgrund der Erneuerung des Kreuzungsbauwerks (BW 51) ist eine Gradientenanhebung um ca. 1,1 m erforderlich. Durch die ohnehin sehr hohe Längsneigung von bis zu 8,2 % in der Hadamarstraße und die sehr engen baulichen Randbedingungen (Einhundung der Straße „Am Zieget“) am nördlichen Widerlager lässt sich die Gradientenanpassung nur über einen gegenüber dem Bestand reduzierten Kuppenhalbmesser ($H_k = 500$ m, bisher 700 m) erreichen. Nach den Richtlinien für Anlage von Stadtstraßen handelt es sich um eine Sammelstraße; deren zulässige Höchstgeschwindigkeit auf 30 km/h begrenzt ist. Der gewählte Kuppenhalbmesser liegt damit deutlich über dem Mindestwert von 250 m gem. der Richtlinie zur Anlage von Stadtstraßen (RASt’06).

Die bestehende Fahrbahnbreite von 6,0 m wird im Bauwerksbereich beibehalten. Die westliche Bauwerkskappe ermöglicht die Anlage eines Gehweges mit einer Breite von bis zu 2,50 m. Auf der östlichen Bauwerkskappe ist die Anlage eines Gehweges, aufgrund der nicht erreichbaren Haltestrecke bei der Einmündung der Straße „Am Zieget“ nicht vorgesehen.

Der westliche Gehweg wird in südlicher Richtung mit einer Breite von 2,50 m bis zur bestehenden Haltestelle „Rotsäulenweg“ des Regensburger Verkehrsverbundes (RVV) fortgeführt und endet hier. Der bestehende 2,0 m breite östliche Gehweg des Rotsäulenweges wird teilweise rückgebaut, um ein Queren der Fußgänger im Kuppenbereich der Straße zu vermeiden.

Der Oberbau wird gemäß RStO, Ausgabe 2012 entsprechend der Belastungs-Klasse Bk 3,2 befestigt.

Augsburger Straße (Rs 4) Bau-km 492+268:

Die Augsburger Straße (Rs 4) wird bei Bau-km 492+268 über die A 3 überführt. Aufgrund der erforderlichen lichten Höhe über der Autobahn und der größeren lichten Weite des Bauwerks BW 52 ist eine Gradientenanhebung um ca. 1,4 m erforderlich. Es handelt sich nach RAST um eine örtliche Einfahrtsstraße, deren zulässige Höchstgeschwindigkeit auf 50 km/h begrenzt ist. Der Kuppenhalbmesser
liegt mit \(H_k = 1.000 \) m über dem für anbaufreie Hauptverkehrsstraßen Mindestwert von 900 m.

Die Fahrbahnbreite der Augsburger Straße wird nach Abstimmung mit der Stadt Regensburg im Bauwerksbereich von 8,0 m auf 6,5 m reduziert. Die westliche und östliche Bauwerkskappe ermöglichen die Anlage von Gehwegen mit einer Breite von jeweils bis zu 2,75 m.

Der Oberbau wird gemäß RStO, Ausgabe 2012 entsprechend der Belastungsklasse Bk 3,2 befestigt.

Unterislinger Weg (Rs 19) Bau-km 495+465:

Der Unterislinger Weg wird bei Bau-km 495+465 über die A 3 überführt. Aufgrund der erforderlichen lichten Höhe über der BAB und der größeren lichten Weite des Bauwerks BW 56 ist eine Gradientenanhebung um ca. 0,40 m erforderlich. Es handelt sich um eine angebaute Hauptverkehrsstraße, deren zulässige Höchstgeschwindigkeit auf 50 km/h begrenzt ist. Der Kuppenhalbmesser liegt mit \(H_k = 1.250 \) m über dem Mindestwert für anbaufreie Hauptverkehrsstraßen von 900 m.

Die derzeitige Fahrbahnbreite von 7,0 m im Bauwerksbereich wird wieder hergestellt. Die westliche Bauwerkskappe ermöglicht die Anlage eines Gehweges mit einer Breite von bis zu 3,50 m. Auf der östlichen Bauwerkskappe ist die Anlage eines Gehweges nicht vorgesehen.

Der Oberbau wird gemäß RStO, Ausgabe 2012 entsprechend der Belastungsklasse Bk 3,2 befestigt.

Markomannenstraße Bau-km 496+049:

Die Markomannenstraße wird bei Bau-km 496+049 über die A 3 überführt. Aufgrund der erforderlichen lichten Höhe über der Autobahn und der größeren lichten Weite des Bauwerks BW 57 ist eine Gradientenanhebung um ca. 0,5 m erforderlich. Es handelt sich um eine angebaute Hauptverkehrsstraße, deren zulässige Höchstgeschwindigkeit auf 50 km/h begrenzt ist. Der Kuppenhalbmesser liegt mit \(H_k = 1.000 \) m über dem Mindestwert für anbaufreie Hauptverkehrsstraßen von 900 m.
Die Fahrbahnbreite von 7,50 m im Bauwerksbereich wird wieder hergestellt. Die östliche Bauwerkskappe ermöglicht die Anlage eines bis zu 3,50 m breiten Gehwegs. Auf der westlichen Bauwerkskappe ist die Anlage eines Gehweges nicht vorgesehen.

Der Oberbau wird gemäß RStO, Ausgabe 2012 entsprechend der Belastungsklasse Bk 3,2 befestigt.

Eisackerstraße Bau-km 499+649:

Die Eisackerstraße wird bei Bau-km 499+649 über die A 3 überführt. Es handelt sich um eine anbaufreie Verbindungsstraße, deren zulässige Höchstgeschwindigkeit auf 50 km/h begrenzt ist. Das zulässige Gesamtgewicht ist derzeit auf 2,8 to begrenzt, Busse und landwirtschaftlicher Verkehr ausgenommen. Aufgrund der erforderlichen lichten Höhe über der BAB und der größeren lichten Weite des Bauwerks BW 62 ist eine Gradientenanhebung um ca. 0,4 m erforderlich. Der Kuppenhalbmesser liegt mit \(H_k = 1.400 \) m über dem Mindestwert für anbaufreie Hauptverkehrsstraßen von 900 m.

Gemäß den Abstimmungen mit der Stadt Regensburg, wird die Fahrbahnbreite im Bauwerksbereich von 7,50 auf 6,00 m reduziert. Die westliche Bauwerkskappe ermöglicht die Anlage eines bis zu 2,50 m breiten Gehwegs. Auf der östlichen Bauwerkskappe ist die Anlage eines Gehweges nicht vorgesehen.

Der Oberbau wird gemäß RStO, Ausgabe 2012 entsprechend der Belastungsklasse Bk 3,2 befestigt.

Kreuzhofstraße Bau-km 500+464:

Die Kreuzhofstraße wird bei Bau-km 500+464 über die A 3 überführt. Es handelt sich um einen, nur für den landwirtschaftlichen Verkehr freigegebenen, öffentlichen Feld- und Waldweg. Aufgrund der erforderlichen lichten Höhe über der Autobahn und der größeren lichten Weite des Bauwerks BW 64 ist eine Gradien-
tendenanhebung um ca. 0,60 m erforderlich. Der Kuppenhalbmesser liegt mit \(H_k = 1.400\) m über dem Mindestwert für anbaufreie Hauptverkehrsstraßen von 900 m.

Die Breite der Fahrbahn wird im Bauwerksbereich gemäß den Abstimmungen mit der Stadt Regensburg von 7,50 m auf 7,00 m reduziert. Die westliche und östliche Bauwerkszappe ermöglichen die Anlage von Gehwegen mit einer Breite von jeweils bis zu 2,50 m.

Gesondert geführte Geh- oder Radwege entlang der Kreuzhofstraße sind derzeit aufgrund der untergeordneten Verkehrsbedeutung nicht erforderlich.

Der Oberbau wird gemäß RStO, Ausgabe 2012 entsprechend der Belastungsklasse Bk 3,2 befestigt.

St 2145 (Walhallastraße) Bau-km 501+739:

Die Staatsstraße 2145 wird bei Bau-km 501+739 über die A 3 überführt. Aufgrund der erforderlichen lichten Höhe über der Autobahn und der größeren lichten Weite des Bauwerks BW 65 ist eine Gradientenanhebung um ca. 0,30 m erforderlich. Es handelt sich um eine überregionale Landstraße, deren zulässige Höchstgeschwindigkeit auf 60 km/h begrenzt ist. Der Kuppenhalbmesser beträgt 1.850 m und liegt damit über dem, zur Einhaltung der Haltesichtweite bei \(V = 60\) km/h erforderlichen Kuppenhalbmesser von 530 m. Die St 2145 wird zwischen dem signalisierten Anschlussknoten des südwestlichen Anschlussstellenastes und dem signalisierten Kreuzungsknoten mit der B-8 St 2660 in Höhe und Lage angepasst. Die dichte Knotenpunktabfolge an der St 2145 in Verbindung mit dem hohen Verkehrsaufkommen macht einen zusätzlichen Fahrstreifen im Bauwerksbereich notwendig. Nach Abstimmung mit dem Staatlichen Bauamt Regensburg, Fachbereich Straßenbau, sind künftig vier Fahrstreifen (statt bisher drei Fahrstreifen) mit je 3,50 m Breite erforderlich. Der bisher über ein separates, nachträglich errichtetes Bauwerk BW 65/1 geführte gemeinsame Geh- und Radweg wird zusammen mit der St 2145 auf das neu zu errichtende Bauwerk gelegt. Die Fahrbahn wird im Bauwerksbereich von 10,0 auf 15,0 m verbreitert, der westlich anliegende gemeinsame Geh- und Radweg wird mit 2,50 m Breite und einen Sicherheitsstrennstreifen mit 75 cm Breite zw. Fahrbahn und gem. Geh- und Radweg wieder hergestellt. Im Bauwerksbereich erhält der gem. Geh- und Radweg gem. MS vom 12.02.2014 (AZ. IID9-43411-001/95) eine Breite von 3,0 m zwischen Geländer und Schutzeinrichtung.
Der Oberbau wird gemäß RStO, Ausgabe 2012 entsprechend der Belastungsklasse Bk 10 befestigt.

GVS Barbing – Oberheising Bau-km 502+593:

Die Gemeindeverbindungsstraße Barbing - Oberheising wird bei Bau-km 502+593 über die A 3 überführt. Es handelt sich um einen Weg, der als Geh- und Radweg beschildert und für den landwirtschaftlichen Verkehr freigegeben ist. Aufgrund der erforderlichen lichten Höhe über der Autobahn und der größeren lichten Weite des Bauwerks BW 66 ist eine Gradientenanhebung um ca. 0,60 m erforderlich. Der Kuppenhalbmesser beträgt 1.350 m.

Die im Bestand vorhandene Fahrbahnbreite von 5,0 m wird wiederhergestellt. Auf den Bauwerkskappen sind keine gesondert geführten Gehwege vorgesehen.

Diese Wegeverbindung ist Teil der Radtour 1 der Stadt Neutraubling „Sarchinger Weiher“.

Der Oberbau wird gemäß RStO, Ausgabe 2012 entsprechend der Belastungsklasse Bk 3,2 befestigt.

GVS Unterheising – Oberheising Bau-km 503+899:

Die Gemeindeverbindungsstraße Unterheising - Oberheising wird bei Bau-km 503+899 über die A 3 überführt. Aufgrund der erforderlichen lichten Höhe über der BAB und der größeren lichten Weite des Bauwerks BW 67 ist eine Gradientenanhebung um ca. 0,65 m erforderlich. Der Kuppenhalbmesser beträgt 1.400 m und liegt damit deutlich über dem zur Einhaltung der Haltesichtweite erforderlichen Kuppenhalbmesser. Es handelt sich um eine nahräumige Landstraße deren zulässige Höchstgeschwindigkeit auf 50 km/h begrenzt ist.

Die GVS Unterheisinger Weg mit ursprünglich 4,0 m Fahrbahnbreite (mit Aufweiten bis zu 5,0 m als Wartebereich für den Begegnungsverkehr vor und nach dem Kreuzungsbauwerk mit der A 3) wird in dem gesamten, durch die Gradientenanänderung zu erneuernden, Bereich auf 4,50 m verbreitert (gem. Bekanntmachung der Obersten Baubehörde Az.: IIID2-43410-001/95 bei untergeordneten Gemeindeverbindungsstraßen mit DTV < 500 Kfz/24h). Dadurch kann auf die Anlage von separaten Wartebereichen verzichtet werden. Im Bauwerksbereich ist
aufgrund der beidseitigen Hochborde eine Fahrbahnbreite von 5,0 m erforderlich. Gesondert geführte Geh- und Radwege sind nicht erforderlich.

Der Oberbau wird gemäß RStO, Ausgabe 2012 entsprechend der Belastungsklasse Bk 3,2 befestigt.

B 8 Regensburg – Straubing Bau-km 505+035:

Die Bundesstraße B 8 wird bei Bau-km 505+035 über die A 3 überführt. Aufgrund der erforderlichen lichten Höhe über der Autobahn und der größeren lichten Weite des Bauwerks BW 68 ist eine Gradientenanhebung um ca. 0,65 m erforderlich. Es handelt sich um eine überregionale Landstraße deren zulässige Höchstgeschwindigkeit auf 80 km/h beschränkt ist. Der Kuppenhalbmesser beträgt 2.000 m und liegt damit über dem zur Einhaltung der Haltesichtweite erforderlichen Kuppenhalbmesser. Die B 8 wird mit ihrer ursprünglichen Fahrbahnbreite von 8,50 m im Bauwerksbereich wieder hergestellt. Auf Veranlassung des Baulastträgers der B 8, das Staatliche Bauamt Regensburg, wird die östliche Bauwerkskappe die Anlage eines gemeinsamen Geh- und Radweges mit einer Breite von 3,0 m zwischen Geländer und Schutzeinrichtung ermöglichen. Die zuführenden Radwege werden mittelfristig im Zuge des Radwegeprogrammes des staatlichen Bauamtes umgesetzt.

Der Oberbau wird gemäß RStO, Ausgabe 2012 entsprechend der Belastungsklasse Bk 3,2-10 befestigt.

4.5.2 Betriebswege / öffentliche Feld- und Waldwege

Öffentliche Feld- und Waldwege sowie der Weg der Parkanlage des Universitätsgeländes, welche im Zuge des Ausbaus überbaut werden, werden ebenfalls in verdrängter Lage wieder hergestellt.
Die Betriebs- und Wirtschaftswegen erhalten in der Regel eine 3,0 m breite Fahrbahn und 0,50 m breite Bankette. Der Fahrbahnaufbau wird gemäß den Grundsätzen für die Gestaltung ländlicher Wege bei Baumaßnahmen an Bundesautobahnen (RLW 99) Bundesfernstraßen mit wassergebundener Deckschicht ausgeführt. Die Lage der betreffenden Wege ist in den Lageplänen der Unterlage 5.1 Blatt 1T-3T, 4, 5T, 6 und 7 dargestellt.

4.6 Nebenanlagen

4.6.1 Parkplätze bei Bau-km 500+100 und 500+600

Die bestehenden Parkplätze bei Bau-km 500+100 in Fahrtrichtung Passau und 500+600 in Fahrtrichtung Nürnberg, die je eine Fahrspur und einen rd. 120 m langen Parkstreifen aufweisen, werden von der Baumaßnahme berührt. Ein Wiederherstellen der Parkplätze in verdrängter Lage ist nach den heutigen Richtlinien zur Anlage von Rastanlagen an dieser Stelle nicht möglich. Die Parkplätze werden ersatzlos rückgebaut.

4.6.2 Betriebsumfahrt bei Bau-km 507+252

Im Bestand kann der 4-streifige Fahrbahnquerschnitt je Räum- und Streuschleife mit einem Winterdienstfahrzeug betreut werden.

Der künftig 6-streifige Fahrbahnquerschnitt der A 3 muss auf Grund der Fahrbanubreite mit zwei parallel fahrenden Winterdienstfahrzeugen betreut werden.

Aufgrund des Ausbauendes nach der AS Rosenhof und der großen Entfernung bis zur nächsten AS Wörth a.d. Donau/Wiesent (ca. 9 km) entsteht ein hoher Anteil an Leerfahrten des jeweils zweiten Winterdienstfahrzeuges.

Die Vorgaben des Bundesministeriums für Verkehr und digitale Infrastruktur (BMVI) sowie die Vorgaben der Oberstern Baubehörde bzgl. der zulässigen Umlaufzeiten der Räum- und Streuschleifen an Bundesautobahnen lassen sich künftig ohne zusätzliche Betriebsumfahrt nicht erfüllen.

Die Betriebsumfahrt wird an einer bestehenden Kreuzung einer Gemeindeverbindungsstraße bei Bau-km 507+252 gem. den Richtlinien zur Anlage von Autobahnen (RAA Ziff. 8.9) errichtet. Die Fahrbahn erhält eine Breite von 5,0 m (entspricht dem Mindestwert). Die Bankette werden 1,0 m breit ausgeführt.
Der Oberbau wird gemäß RStO, Ausgabe 2012 entsprechend der Belastungs-
klasse Bk 3,2 befestigt.

4.7 Ingenieurbauwerke

Brücken und Durchlässe:
Im Ausbaubereich befinden sich 28 Unter- bzw. Überführungsbauwerke.

Bis auf wenige Ausnahmen wurden die meisten Bauwerke in den Jahren 1963-
65 errichtet. Nachträglich wurden errichtet:

- 1980 die Fußwegüberführung im Bereich der Universität BW 55/1, Bau- und
 Unterhaltslast Staatliches Bauamt Regensburg,
- 1987 die Unterführung der Max-Planck Str. BW60/1,
- 1995 die Überführung der GVS Barbing – Neutraubling,
- 1998 die Überführung der Galgenbergstraße BW55/2 (Überführungsbauwerk
 der AS R.-Universität) und
- 2000 die Geh- und Radwegüberführung BW65/1 parallel zur St 2145 bei
 Neutraubling.

Von den Unter- und Überführungsbauwerken werden 16 vollständig erneuert, bei
zwei überschütteten Bauwerken wird die breitere Dammkrone über Stützschei-
ben abgefangen und an zwei sind lediglich die Böschungskegel durch Stützkon-
struktionen zu sichern.

Das halbseitige Durchlassbauwerk BW 53 wird verdämmt.
Liste der im Ausbaubereich vorhandenen bzw. zu erneuernden Bauwerke:

<table>
<thead>
<tr>
<th>Bauwerk</th>
<th>Bauwerksbezeichnung</th>
<th>Bau-km</th>
<th>lichte Weite</th>
<th>Kreuzungs-winkel</th>
<th>lichte Höhe</th>
<th>Breite zw. Geländer</th>
<th>Umbau- maßnahme erforderlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW 50/1</td>
<td>A 93 Holledau - Hof</td>
<td>491+600</td>
<td>53,55</td>
<td>52,0</td>
<td>4,70</td>
<td>10,75</td>
<td>nein</td>
</tr>
<tr>
<td>BW 50/2</td>
<td>" II "</td>
</tr>
<tr>
<td>BW 50/3</td>
<td>" II "</td>
</tr>
<tr>
<td>BW 50/4</td>
<td>" II "</td>
</tr>
<tr>
<td>BW 51</td>
<td>Rotsäulenweg/ Hadamarstr.</td>
<td>491+970</td>
<td>78,65</td>
<td>100,0</td>
<td>4,70</td>
<td>9,00</td>
<td>Neubau</td>
</tr>
<tr>
<td>BW 52</td>
<td>Augsburger Str.</td>
<td>492+268</td>
<td>64,50</td>
<td>92,4</td>
<td>4,70</td>
<td>12,00</td>
<td>Neubau</td>
</tr>
<tr>
<td>BW 53</td>
<td>Durchlass</td>
<td>492+713</td>
<td>0,80</td>
<td>100,0</td>
<td>1,40</td>
<td>-</td>
<td>entfällt</td>
</tr>
<tr>
<td>BW 54</td>
<td>Graßer Weg</td>
<td>492+879</td>
<td>12,00</td>
<td>89,9</td>
<td>4,50</td>
<td>36,50</td>
<td>Neubau</td>
</tr>
<tr>
<td>BW 55</td>
<td>Universitätsstraße</td>
<td>493+751</td>
<td>12,00</td>
<td>100,0</td>
<td>4,50</td>
<td>36,50</td>
<td>Neubau</td>
</tr>
<tr>
<td>BW 55/1</td>
<td>Fußweg bei der Universität</td>
<td>493+973</td>
<td>105,95</td>
<td>91,6</td>
<td>7,15</td>
<td>2,50</td>
<td>nein</td>
</tr>
<tr>
<td>BW 55/2</td>
<td>Galgenbergstraße</td>
<td>494+811</td>
<td>55,60</td>
<td>92,7</td>
<td>4,80</td>
<td>26,45</td>
<td>nein</td>
</tr>
<tr>
<td>BW 56</td>
<td>Unterislinger Weg</td>
<td>495+465</td>
<td>51,50</td>
<td>101,5</td>
<td>4,70</td>
<td>12,00</td>
<td>Neubau</td>
</tr>
<tr>
<td>BW 57</td>
<td>Markomannenstraße</td>
<td>496+049</td>
<td>48,00</td>
<td>99,8</td>
<td>4,70</td>
<td>12,00</td>
<td>Neubau</td>
</tr>
<tr>
<td>BW 58</td>
<td>Lanshuter/ Obertraublingerstr.</td>
<td>497+075</td>
<td>30,00</td>
<td>89,9</td>
<td>4,70</td>
<td>39,00</td>
<td>Neubau</td>
</tr>
<tr>
<td>BW 59</td>
<td>Gleisanlagen der DB AG</td>
<td>497+672</td>
<td>194,9</td>
<td>78,7</td>
<td>6,10</td>
<td>37,50</td>
<td>36,60</td>
</tr>
<tr>
<td>BW 60</td>
<td>Junkerstr.</td>
<td>498+115</td>
<td>5,60</td>
<td>100,3</td>
<td>4,20</td>
<td>42,00</td>
<td>Stützwände</td>
</tr>
<tr>
<td>BW 60/1</td>
<td>Max-Plank-Str.</td>
<td>498+317</td>
<td>38,00</td>
<td>93,0</td>
<td>4,70</td>
<td>39,00</td>
<td>Neubau</td>
</tr>
<tr>
<td>BW 61</td>
<td>Aubachdurchlass</td>
<td>498+728</td>
<td>3,00</td>
<td>100,0</td>
<td>2,70</td>
<td>54,45</td>
<td>Stützwände</td>
</tr>
<tr>
<td>BW 62</td>
<td>Eissackerstr.</td>
<td>499+649</td>
<td>50,00</td>
<td>99,9</td>
<td>4,70</td>
<td>9,50</td>
<td>Neubau</td>
</tr>
<tr>
<td>BW 63</td>
<td>Augrabendurchlass</td>
<td>500+002</td>
<td>2,00</td>
<td>100,0</td>
<td>1,86</td>
<td>36,50</td>
<td>Neubau</td>
</tr>
<tr>
<td>BW 64</td>
<td>Kreuzhofstr.</td>
<td>500+464</td>
<td>50,00</td>
<td>100,0</td>
<td>4,70</td>
<td>12,00</td>
<td>Neubau</td>
</tr>
<tr>
<td>BW 65</td>
<td>Walhallastraße/St 2145</td>
<td>501+739</td>
<td>51,00</td>
<td>102,3</td>
<td>4,70</td>
<td>20,60</td>
<td>Neubau</td>
</tr>
<tr>
<td>BW 66</td>
<td>GVS Barbing - Oberheising</td>
<td>502+593</td>
<td>50,50</td>
<td>100,0</td>
<td>4,70</td>
<td>6,50</td>
<td>Neubau</td>
</tr>
<tr>
<td>BW 66/1</td>
<td>GVS Barbing-Neutraubling</td>
<td>502+928</td>
<td>41,0</td>
<td>61,2</td>
<td>4,59</td>
<td>12,75</td>
<td>nein</td>
</tr>
</tbody>
</table>
A 3 Nürnberg – Passau, 6-streifiger Ausbau zw. AK Regensburg und AS Rosenhof

Erläuterungsbericht

Unterlage 1 T

Seite 44

<table>
<thead>
<tr>
<th>Bauwerk</th>
<th>Bauwerksbezeichnung</th>
<th>Bau-km</th>
<th>lichte Weite</th>
<th>Kreuzungswinkel</th>
<th>lichte Höhe</th>
<th>Breite zw. Geländern</th>
<th>Umbau- maßnahme erforderlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW 67</td>
<td>GVS Unterheising – Oberheising</td>
<td>503+899</td>
<td>40,0</td>
<td>100,0</td>
<td>4,70</td>
<td>6,00</td>
<td>Neubau</td>
</tr>
<tr>
<td>BW 68</td>
<td>B 8 Regensburg – Straubing</td>
<td>505+035</td>
<td>53,0</td>
<td>73,6</td>
<td>4,70</td>
<td>13,80</td>
<td>Neubau</td>
</tr>
<tr>
<td>BW 69</td>
<td>öFW Wolfskofen – Sarching</td>
<td>505+413</td>
<td>43,0</td>
<td>100,0</td>
<td>4,82</td>
<td>6,00</td>
<td>nein</td>
</tr>
<tr>
<td>BW 70</td>
<td>GVS Friesheim - Roith</td>
<td>507+252</td>
<td>43,0</td>
<td>100,0</td>
<td>4,70</td>
<td>9,50</td>
<td>nein</td>
</tr>
</tbody>
</table>

Tabelle 4: Bauwerke im Ausbaubereich

Die zu erneuernden Bauwerke werden an die geltenden Regeln der Technik angepasst. Die Querschnitte der kreuzenden Straßen und Wege wurden mit dem jeweiligen Baulastträger abgestimmt (siehe Ziff. 4.5.1).

Da die Stadt Regensburg seit den 60er Jahren über die A 3 als bisherige südliche Begrenzung mit den Ortschaften Pentling, Graß, Leoprechting, Unterisling und Burgweinting zusammenwächst, ist die Anlage von mehreren Gehwegen an bzw. auf den Unter- und Überführungen erforderlich (siehe Ziff. 4.6.1). Die Abstimmung mit der Stadt Regensburg hat ergeben, dass die benötigten Breiten für die Anlage von Gehwegen auf bzw. an den Bauwerken durch eine Verschmälerung der vorhandenen Fahrbahnbreiten und/oder durch Verschiebung der vorhandenen Kappenbreite zugunsten der Gehwegseite geschaffen werden und insofern keine Verbreiterungen der Bauwerke erforderlich werden. Somit ergibt sich keine Kostenbeteiligung der Stadt Regensburg an diesen Bauwerken gemäß §12(3) Nr. 2 FStrG.

Die geänderten Gehwegbreiten betreffen folgende Bauwerke:

- BW 51 Rotsäulenweg/Hadamarstr
- BW 52 Augsburgerstraße (Rs 4)
- BW 56 Unterislinger Weg (Rs 19)
- BW 57 Markomannenstraße
- BW 62 Eisackerstraße
- BW 64 öFW Kreuzhofstraße

Die Überführungen BW 51 und BW 52 wurden hinsichtlich ihrer lichten Weiten nicht nur den Erfordernissen der Spuraddition bzw. –subtraktion am Beginn der Baustrecke angepasst, sondern berücksichtigen darüber hinaus einen weiterfüh-
rende 6-streifige Ausbau durch das AK Regensburg. Ein wiederholter Neubau
derer Bauwerke bei Fortführung der Ausbaumaßnahmen an der A 3 Richtung
Nürnberg wird dadurch vermieden.

Die Brücke BW 65 (Überführung der St 2145) wird aufgrund der Anlage eines
zusätzlichen Fahrstreifens an der Staatsstraße verbreitert (siehe Kap 4.5.1).

Stützwände:

Von Bau-km 491+975 bis 492+400 wird in Fahrtrichtung Nürnberg eine rd. 425 m
lange und max. 5,50 m hohe Stützkonstruktion erforderlich. Die Stützwand er-
laubt eine Verbreiterung der bestehenden Fahrbahn in Richtung Norden unter
Beibehaltung der derzeitigen Böschungskrone und der Lage der derzeitigen
Lärmschutzwand. Die Lage der Spundwandböschung berücksichtigt einen wei-
terführenden 6-streifigen Ausbau durch das AK Regensburg.

4.8 Lärmschutzanlagen

Aufgrund der sehr differenzierten Ausgestaltung und der großen Anzahl an akti-
ven Lärmschutzanlagen wird an dieser Stelle auf eine Auflistung der einzelnen
Lärmschutzanlagen verzichtet. Die aktiven Lärmschutzanlagen sind in den Lage-
und Höhenplänen (siehe Unterlage 7 und 6.1) sowie im Regelungsverzeichnis
(Unterlage 11) detailliert beschrieben. Die Begründung für die Lärmschutzanla-
gen und deren Abmessungen ergeben sich aus der schalltechnischen Untersu-
chung und sind in Unterlage 17 ausführlich beschrieben. Die rechtlichen Grund-
lagen des Immissionsschutzes und die Erläuterung der Variantenabwägung für
die aktiven Lärmschutzmaßnahmen sind unter Ziff. 6.1.1 näher erläutert.

4.9 Leitungen

Die Ausbaumaßnahme erfordert die Verlegung von einigen Leitungstrassen. We-
sentliche Leitungsverlegungen erfolgen:

- zwischen der Augsburger Straße und Universitätsstraße nördlich der A 3. Hier
 werden auf einer Länge von rd. 1,5 km die Ferngasleitung DN 300 der „Gas-
 line“, zwei 20 kV Erdkabel sowie Fernmelde- (FM-) und Lichtwellenleiter-
 (LWL-) Kabel der REWAG in den neu zu errichtenden Betriebsweg der BAB
 verlegt.
- zwischen der St 2145 (AS Neutraubling) und GVS Barbing-Oberheising südlich der A 3. Hier werden auf einer Länge von rd. 850 m neben zwei 110 kV Erdkabel, ein 20 kV Kabel sowie FM- und LWL-Kabel der REWAG verlegt. In diesem Bereich werden ab dem Pumpwerk auf einer Länge von rd. 300 m zwei Wasserversorgungsleitungen eine Trinkwasserleitung DN 400 und eine Abwasserleitung DN 400 des Wasserzweckverbandes Regensburg-Süd verlegt.

- bei den zwei 110 kV Freileitungskreuzungen zum Umspannwerk Neutraubling bei Bau-km 502+500 werden die Freileitungen südlich der A 3 durch zwei zusätzliche Masten angehoben.

Neben diesen wesentlichen Leitungsverlegungen sind zahlreiche weitere Anpassungen an den verbreiterten Straßenkörper erforderlichen. So sind bei Leitungskreuzungen vereinzelt die Schutzrohre zu verlängern und das BAB-Kabel sowie die Notrufsäulenstandorte zu verlegen. Einzelheiten zu den Leitungsverlegungen sind dem Regelungsverzeichnis (Unterlage 11), den Lageplänen zur Spartenverlegung (Unterlage 5.2 Blatt 1-7) sowie den Querschnitten zur Spartenverlegung (Unterlage 14.3) zu entnehmen.

4.10 Baugrund/Erdarbeiten

4.10.1 Geologie und bautechnische Einstufung der Böden

Geologischer Überblick:

Beschreibung der Ausbaustrecke:

Die tertiären Ablagerungen sind an der Oberfläche verlehm. Die lehmigen Schichten reichen bis in Tiefen über 10 m, wobei ungeklärt ist, ob es sich hier um Verwitterungsschichten handelt oder um tonig-schluffige Ablagerungen (Talfüllungen) des Tertiärs.

Westlich der Anschlussstelle Burgweinting liegt die A 3 auf einer Schicht aus Lösslehm.

Östlich der AS Burgweinting bis zum Ende der Ausbaustrecke bei der AS Rosenhof liegt die Trasse auf den Niederterrassenschottern der Donau. Die Niederterrassenschotter bestehen aus Kiesen und Sanden, die oberflächlich verlehm sind.

Im Bereich des Aubachs liegen lehmige, kiesige Sande.

Bautechnische Einstufung der Böden:

Unabhängig von der geologischen Herkunft können die Böden des Tertiärs und des Quartärs (Löss) unter dem Begriff bindige Böden zusammengefasst werden.

Die Böden sind als stark frostempfindlich einzustufen (F3). Bei Zutritt von Wasser weichen die bindigen Böden auf und können nicht mehr mit der erforderlichen Verdichtung eingebaut werden.

Da im Bereich der Ausbaustrecke insgesamt ein Massendefizit zu erwarten ist, sollten die ausgehobenen Massen im Bereich der Strecke soweit möglich wieder
eingebaut werden, dazu ist teilweise eine Bodenverbesserung mit Bindemitteln erforderlich.

Der Auelehm im Bereich des Aubachs ist nicht tragfähig. In diesem Bereich sind ein Bodenaustausch oder andere tragfähigkeitsverbessernde Maßnahmen (z. B. Rüttelstopfsäulen) erforderlich.

4.10.2 Grundwasser

Ab der AS Regensburg-Burgweinting bis zum Ende der Ausbaustrecke bei der AS Rosenhof bilden die Donaukiese den Grundwasserleiter.

Im Bereich des Aubachs steht das Grundwasser oberflächennah an.

4.10.3 Altlastenverdacht

4.10.4 Rüstungsaltlasten

Im Regensburger Osten kam es während des zweiten Weltkriegs zu Kampfhandlungen in Form massiver Luftangriffe. Ziele waren dabei der Ölhafen Regensburg, die Flakbatterie am Napoleonstein, das Kasernenviertel und der Fliegerhorst Obertraubling (jetzt Neutraubling).

Für die Gesamtstrecke der A 3 wurde von der Autobahndirektion Südbayern eine historisch-genetische Rekonstruktion der Kampfmittelbelastung in Auftrag gegeben.

Es wurden Archivrecherchen, Literaturrecherchen, Dokumentationen von Angriffen, Abfragen beim Sprengkommando usw. ausgewertet.

Beim Landesamt für Digitalisierung, Breitband und Vermessung und bei der Luftbilddatenbank Carls wurden die verfügbaren Luftbilder ermittelt und beschafft.

Die Auswertung der Recherchen ergab, dass die A 3 im Bereich von Regensburg bis Rosenhof gemäß den „Arbeitshilfen Kampfmittelräumung“ zu Flächenkategorie 2 gehört, d. h. auf den Flächen wurden Kampfmittelbelastungen vermutet oder festgestellt. Es besteht weiterer Erkundungsbedarf.

Beim Ausbau der A 3 sind umfangreiche Arbeiten zur Kampfmittelerkundung durchzuführen. In Anbetracht der Vielzahl von Bombardierungen ist eine technische Erkundung vor Baubeginn bzw. baubegleitend erforderlich. Die Flächen
müssen mit Magnetometern von der Oberfläche aus abgesucht werden. Wo wegen metallischen Störkörpern wie Schutzplanken, Schildern, Zäunen usw. keine Suche im Vorfeld durchgeführt werden kann, muss eine baubegleitende Kampf- mittelsuche durchgeführt werden.

4.10.5 Umfang der Erdarbeiten, Massenbilanz
Der Umfang der zu gewinnenden Einschnittmassen beträgt rund 50.000 m³. Dem gegenüber steht ein Bedarf für die Dammverbreiterung in Höhe von rund 60.000 m³. Für die Anlage der Lärmschutzwälle und Wall-/Wandkombinationen entsteht ein Bedarf von rund 580.000 m³. Es werden somit insgesamt rund 600.000 m³ Erdmassen zusätzlich benötigt.

4.11 Entwässerung

4.11.1 Anlass zur Änderung der Entwässerung
Durch den 6-streifigen Ausbau der A 3 werden einerseits durch die Fahrbahnverbreiterungen zusätzliche Flächen versiegelt, andererseits wird das Niederschlagswasser, das bisher über Bankett und Böschung breitflächig versickerte, durch die Anlage von Lärmschutzeinrichtungen an einer breitflächigen Versickerung gehindert.

Darüber hinaus entsprechen die bisherigen Anlagen zur Ableitung des Niederschlagswassers (Einleitung in städtische Mischwasserkanäle oder autobahneneigene Versickerschächte) nicht den wasserwirtschaftlichen Grundsätzen und den Anforderungen des heutigen Gewässer- und Grundwasserschutzes. Zudem sind die bestehenden Entwässerungsanlagen nach rd. 50 Jahren weitestgehend erneuerungsbedürftig.

4.11.2 Vorflutverhältnisse
Im Bereich des 6-streifigen Ausbaus liegen nur wenige Oberflächengewässer vor, welche alle in die Donau münden.

Ab der Ortschaft Graß verläuft der Islinger Mühlbach parallel zur A 3 bis er kurz vor Burgweinting in den Aubach mündet (siehe Unterlage 3T). Dieser unterquert erst die Bahnstrecke München – Regensburg bevor er kurz nach der Anschluss-
stelle Regensburg-Ost die A 3 mittels eines Durchlassbauwerks (BW 61) quert und über die Ortschaft Irl und das Irler Becken am Osthafen in die Donau mündet.

Am östlichen Rande des Stadtgebietes Regensburg quert der Augraben die A 3 (BW 63) und mündet nach der Ortschaft Irl in den Aubach ein.

Zwischen Neutraubling und Rosenhof gibt es noch zwei weitere Gräben, den Heisinger Graben und den Moosgraben, diese sind als Vorflut für die Autobahnentwässerung zu weit entfernt.

4.11.3 Bestehende Entwässerung

Allgemein

Bisher wurde das Niederschlagswasser bei Querschnitten mit Sägezahnprofil, d.h. einer zum Mittelstreifen hin geneigten Fahrbahnfläche am Mittelstreifen gesammelt und dabei entweder:

- in städtische Kanäle
- in ein Rückhaltebecken
- in ein städtisches Versickerbecken
- in eigene Versickerschächte bzw. –zisternen

ohne vorhergehende Reinigung bzw. Abflussdrosselung eingeleitet.

Bei Querschnitten mit Querneigung nach außen, wurde das Niederschlagswasser frei über das Bankett und die Dammschulter breitflächig versickert.
AK Regensburg bis Straßenhochpunkt bei Bau-km 492+143

Das Niederschlagswasser der A 3 wird in dem vom Ausbau betroffenen Abschnitt, vom AK Regensburg (Bau-km 491+640) bis zum Straßenhochpunkt (Bau-km 492+143) mittels Rohrleitungen innerhalb des Autobahnkreuzes Regensburg gesammelt an der A 93 entlang über einen Sandfang an der Kreuzung Ziegetsdorfer Straße / A 93 zusammen mit dem Niederschlagswasser der A 93 ungedrosselt in den städtischen Mischwasserkanal der Ziegetsdorfer Str. eingeleitet.

Straßenhochpunkt bei Bau-km 492+143 bis Graßer Weg bei Bau-km 492+879

Graßer Weg bei Bau-km 492,879 bis Universitätsstraße bei Bau-km 493+751

Die A 3 weist in diesem Bereich ebenfalls ein Sägezahlprofil auf. Das Niederschlagswasser der zum Mittelstreifen hin geneigten Fahrbahnen wird über einen Sandfang in den städtischen Mischwasserkanal der Universitätsstraße abgeleitet. Die vorhandenen Lärmschutzwände an der nördlichen Fahrbahn verhindern die breitflächige Versickerung der nach außen geneigten Fahrbahnen nicht, so dass deren Niederschlagswasser über Bankett und Böschung breitflächig versickert.

Universitätsstraße bei Bau-km 493+751 bis Landshuter Straße bei Bau-km 497+075

Landshuter Straße bei Bau-km 497+075 bis Unterführung der Gleisanlagen der DB AG bei Bau-km 497+560

Die A 3 weist in diesem Bereich ein Dachprofil auf. Die in Fahrtrichtung Passau bestehende Lärmschutzwand hindert das Niederschlagswasser der Fahrbahn nicht an einer breitflächigen Versickerung über Bankett und Böschung.

Unterführung der Gleisanlagen der DB AG mit einer Länge von rd. 190 m

Unterführung der Gleisanlagen der DB AG bei Bau-km 497+800 bis Ausbauende bei Bau-km 506+300

Im Bereich des Ausfahrtsastes Fahrtrichtung Passau der Anschlussstelle Rosenhof sind in der Mulde am Straßentiefpunkt Versickerschächte angeordnet.

4.11.4 Geplantes Entwässerungskonzept

Allgemein

Die Entwässerungseinrichtungen werden quantitativ an die künftigen Erfordernisse und qualitativ an die heute anzuwendenden Regeln der Technik angepasst. Erläuterungen und Berechnungsergebnisse sind in Unterlage 18 zusammengefasst.

Nachfolgend werden Abschnitte beschrieben, in denen eine breitflächige Versickerung über Bankette und Böschungen nicht möglich ist.

AK Regensburg bis Straßenhochpunkt bei Bau-km 492+143

keiten aus den Entwässerungsanlagen der BAB. Das Regenrückhaltebecken ist über die A 93 anfahrbar und besitzt ein Rückhaltevolumen von 850 m³.

Straßenhochpunkt bei Bau-km 492+143 bis Graßer Weg bei Bau-km 492+879

Graßer Weg bei Bau-km 492+879 bis Landshuter Straße bei Bau-km 497+075

Das Niederschlagswasser des Abschnittes wird mittels Rohrleitungen gesammelt und dem Regenrückhaltebecken 3 im nördlichen Anschlussstellenast der AS Regensburg-Burgweinting zu geführt.

Die Rohrleitungen queren die Universitätsstraße mittels zweier Düker in Verlängerung der am äußeren Fahrbahnrand liegenden Mulden. Die Düker besitzen in den Gehwegbereichen der Universitätsstraße druckdichte Wartungsschächte.

Das Niederschlagswasser wird in einem Absetzbecken gem. DWA-M 153 gereinigt und mittels Tauchrohrenwände, die den Rückhalt von Leichtflüssigkeiten gewährleisten, dem Rückhaltebecken zugeführt. Das Regenrückhaltebecken ist für ein 10-jähriges Regenereignis gemessen und wird als Trockenbecken ausgeführt. Das Becken weist ein Rückhaltevolumen von 5.000 m³ auf und ist damit größer als das gem. hydrologischer Berechnung [4] mit 3.900 m³ erforderliche Volumen, um eine Verschärfung der Hochwassersituation bei Irl (bei geschlossenem Sielbauwerk im HW 100 Fall der Donau) zu vermeiden. Die dem Regen-
rückhaltebecken nachfolgenden Gerinne wurden in Bezug auf die max. Drossel-
abflussmenge von 120 l/s hydraulisch untersucht. Nach der Einleitung in den au-
tobahneigenen Graben bei Bau-km 497+350 bis 497+550 fließt das Nieder-
schlagswasser in nördlicher Richtung parallel zu den Gleisanlagen der DB AG.
Anschließend werden die Gleisanlagen mittels verschiedener Durchlässe (siehe
Lageplan Unterlage 5.1, Blatt 3T) gequert um in den Seegraben zu münden. Die-
sen kreuzt in östlicher Richtung die Junkerstraße, die Max-Planck-Straße und die
Anschlussstellenrampen der AS Regensburg-Ost. Dort mündet der Seegraben in
den Aubach, der letztendlich in die Donau mündet. Die Leistungsfähigkeit der
Büro Blasy & Överland bestätigt.

Unterführung der Gleisanlagen der DB AG mit einer Länge von rd. 190 m

Das Niederschlagswasser im Bereich des Bahnbauwerks wird über Rohrleitun-
gen an das östliche Widerlager geleitet. Dort wird es in ein, unter dem Betriebs-
weg liegenden, unterirdischen Sedimentationsbecken gereinigt und dem Seegra-
ben zugeführt. Leichtflüssigkeiten werden zurückgehalten. Das Sedimentations-
becken entspricht den Anforderungen des DWA-M 153.

Lärmschutzwand bei Irl von Bau-km 499+225 bis 499+995

Das Niederschlagswasser der Fahrbahn in Fahrtrichtung Nürnberg wird in einer
zwischen Bankett und Lärmschutzwand liegenden 2,0 m breiten Mulde zur Versi-
ckerung gebracht. Reicht bei Starkregenereignissen die Versickerung der
Mulde nicht aus wird das Niederschlagswasser über hochgesetzte Muldenabläu-
fe gesammelt und über die Mehrzweckrohleitung, welche auch die Planumsent-
wässerung sicherstellt, zum Augrabens geleitet.

Bau-km 500+000 bis 500+450, nördliche Fahrbahn sowie
Bau-km 504+350 bis ca. 504+850 beide Fahrbahnen

Ein breitflächiges Versickern des Niederschlagswassers ist aufgrund der angren-
zenden Gewerbebebauung nicht möglich. Das Niederschlagswasser wird mittels
einer 4,0 m breiten Mulde versickert.
nachfolgende Lärmschutzwälle und Wall-/Wandkombinationen

Östlich von Irl wird das Niederschlagswasser in Mulden breitflächig zur Versickerung gebracht. Da die 2,0 m breiten Versickermulden vor den Lärmschutzwällen für den 5-jährigen Bemessungsregen nicht ausreichen, werden alle 100 m Rohrdurchlässe DN 400 zur 3,0 m breiten Versickermulden hinter den Lärmschutzwällen angeordnet. Auf eine anliegerseitige Böschungsausrundung, siehe Ziff. 4.3.3, wird bei Anlage von rückwärtigen Versickermulden verzichtet. Die Unterhaltung der rückwärtigen Versickeranlagen wird durch einen angrenzenden Betriebsweg sichergestellt.

Gärtnersiedlung ab Bau-km 501+070 bis Anschlussstellenrampe AS Neutraubling

Im Bereich der Gärtnersiedlung ist anliegerseitig kein Platz zur Anlage von Versickermulden, daher wird, wie im Bestand, eine Überlaufmöglichkeit in die Entwässerung der Stadt Neutraubling geschaffen.

Das anfallende Niederschlagswasser wird in einer 2,0 m breiten Mulde versickert. Die Versickermulde ist für ein 1-jähriges Regenereignis bemessen. Das Niederschlagswasser darüber hinausgehender Regenereignisse wird über hochgesetzte Muldeneinlaufschächte gefasst und wie im Bestand der städtischen Kanalisations zugeführt.

Bau-km 502+595 bis 503+475 und ab Bau-km 504+870 bis Ausbauende, nördliche Fahrfläche sowie

Bau-km 503+900 bis 504+350 und ab Bau-km 504+950 bis Ausbauende, südliche Fahrfläche

Die an die Fahrbahn angrenzenden Flächen reichen nicht aus, um das Niederschlagswasser vollständig auf autobahn eigenen Flächen zu versickern. Zum Schutz der angrenzenden Privatflächen wird am Böschungsfuß des Autobahn- dammes eine 2,0 m breite Versickermulde angelegt, um ein Vernässen der angrenzenden Grundstücke zu vermeiden.

4.12 Straßenausstattung

Die Ausstattung der A 3 einschl. der Anschlussstellen mit Verkehrszeichen, Leit- und Schutzeinrichtungen, Beschilderung, Markierung und Notrufsäulen erfolgt
nach den einschlägigen Vorschriften und Richtlinien für Bundesautobahnen. Davon abweichende Maßnahmen sind nicht vorgesehen.

Die wegweisende Beschilderung ist gem. der Richtlinie für die wegweisende Beschilderung auf Autobahnen (RWBA) als Überkopfbeschilderungen in Form von Schilderbrücken auszubilden.

Bei den berührten Staats-, Kreis-, und Gemeindestraßen erfolgt die Ausstattung entsprechend der verkehrsrechtlichen Anordnungen in Abstimmung mit den Verkehrsbehörden.

5 Angaben zu den Umweltauswirkungen

5.1 Schutzgut Menschen einschließlich der menschlichen Gesundheit

Bestand

Lärm / Luftschadstoffe

Erholung / Erholungseignung

Die Erholungsfunktion ist aufgrund der Nähe zur bestehenden A 3 und den daraus resultierenden Beeinträchtigungen stark eingeschränkt. Ausgewiesene Rad-/Radwanderwege stellen Wegeverbindungen dar, die dem alltäglichen Ziel-/Quellverkehr im städtischen Umfeld dienen.

Umweltauswirkungen

Lärm / Luftschadstoffe:

Erholung / Erholungseignung:

Die Vorhabenseingriffe finden in vorbelasteten Bereichen angrenzend bzw. im Umfeld der bestehenden Autobahntrasse statt. Wege und / oder Flächen mit besonderer Bedeutung für die Erholungsnutzung sind nicht betroffen. Für Wegeverbindungen einschließlich Querungsmöglichkeiten der A 3 ergeben sich über die Bauzeit hinaus keine Einschränken.

5.2 Schutzgut Tiere, Pflanzen, Biologische Vielfalt

Bestand:

schwacher Empfindlichkeit gegenüber Verkehrslärm. Hinsichtlich bodengebun-
dener Tierarten gilt, dass die Damm- und Einschnittsböschungen der Autobahn
sowie Böschungen der Lärmschutzwälle in Verbindung mit sonstigen Böschun-
gen von Straßen und Bahngleisen sowie ungenutzten Grundstücksrändern Habi-
tatpotenzial für Reptilien besitzen (Zauneidechsenbelege auf Böschungen
und Lärmschutzwällen der A 3). Die Böschungen besitzen v. a. Vernetzungsfunk-
tion für Lebensräume von Zauneidechsen, werden aber auch als Lebensräume
selbst genutzt. Im autobahnahmen Bereich ist die Bedeutung der Böschungen
und Straßenränderflächen der Autobahn für Reptilien das entscheidende Kriteri-
um für die Habitatfunktion. Als bodenbrütende Vogelart wurde zwar auch das in
der landwirtschaftlichen Flur vorkommende Rebhuhn trassennah nachgewiesen,
eine besondere Bedeutung der Autobahnböschungen selbst ist jedoch nicht ge-
geben.

Gehölze entlang der Gräben im UG (Untersuchungsgebiet Aubachgrabensystem
und Augraben) sind bereichsweise naturnah ausgebildet und es treten vermehrt
typische gewässerbegleitende Gehölzarten wie Erlen und Weiden auf. In Verbin-
dung mit feuchten bzw. nassen Bodenstandorten bestehen an den Grabensys-
temen östlich der Landshuter Straße sowie im Umfeld der Max-Planck-Straße
noch kleine Auwaldanteile. Zudem treten vermehrt Biotopanteile mit Großröhrich-
ten, Großseggenrieden sowie feuchten und nassen Hochstaudenflecken an den
Gräben und feuchten Standorten östlich der Landshuter Straße sowie im Umfeld
der Max-Planck-Straße auf. Die Flächen beidseits des Bahngeländes, welche
Reststrukturen des Bach- und Grabensystems des Aubaches aufweisen, stellen
wertgebende Lebensraumstrukturen für Vögel mit Bindung zu Feuchtstrukturen
dar. An den Bach- und Grabensystemen findet auch der Biber geeignete Habi-
tatstrukturen. Der Biber kommt am Aubachgrabensystem beidseits der A 3 sowie
an den Abbauflächen im Osten des UG vor. An der A 3 bestehen Durchlässe
am Aubach (Bau-km 498+728, LW 3 m) und am Augraben (Bau-km 500+002,
LW 2 m). Querungen unter der A 3 über Land sind am Rand des Bahngeländes
möglich, das Bahngelände grenzt westlich an die Gewässerabschnitte des Auba-

Im Osten des UG ist das “Elttheimer Hölzl”. Dieses besitzt trotz forstlicher
Nutzung Waldränder und Waldflächen mit gut entwickelten Laubbäumen.
Nördlich der A 3 reicht u. a. mesophiler Laubwald in das UG, insbesondere im
westlichen Waldrandbereich des Laubwaldes sind alte Eichen erhalten. Ein
Graben am Rand des Waldes zur Autobahn A 3 hin (nördlich der Trasse) wird
vereinzelt von größeren Bäumen gesäumt, neben Eichen auch Pappeln und
Kiefern. Das Eltheimer Hölzl mit seinen Ausdehnungen über das UG hinaus besitzt Bedeutung als Lebensraum für Waldvögel und Fledermäuse. Für die Einzelbäume entlang des Grabens am Waldrand nördlich der Autobahn gilt, dass keine sichtbaren Höhlen erfasst wurden, ein Habitatpotenzial für Fledermäuse ist jedoch nicht auszuschließen. Für Spechte und Greife stellen die Einzelbäume hingegen auf Grund ihrer geringen Entfernung von 50 - 60 m zu Autobahn und den verkehrsbedingten Effektdistanzen keine geeigneten Standorte für (potenzielle) Brutstandorte dar.

Umweltauswirkungen:

Baubedingte Auswirkungen hinsichtlich bedeutsamer Habitatfunktionen werden durch Auflagen bei der Baudurchführung vermieden bzw. gemindert. Die nachfolgende Tabelle fasst planungsrelevante Umweltauswirkungen zusammen:

<table>
<thead>
<tr>
<th>Wirkfaktor</th>
<th>Betroffener Bestand</th>
<th>Eingriff / Umfang der Wirkung/ Betroffenheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anlagebedingte Projektwirkungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verluste von Biotopfunktion</td>
<td>Flächen mit allgemeiner Biotopfunktion: Offenland in der landwirtschaftlichen Flur, Straßenböschungen und Straßennebenflächen ohne Biotopstatus, Siedlungsgrün</td>
<td>Versiegelung insg. ca. 0,467 ha</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Versiegelung insg. ca. 11,041 / 11,043 ha</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Versiegelung insg. ca. 0,318 ha</td>
</tr>
<tr>
<td>Wald mit allgemeiner Biotopfunktion</td>
<td>Fallung und nachfolgend Versiegelung: 0,046 ha</td>
<td></td>
</tr>
<tr>
<td>Gehölze naturnah, größtenteils auf Straßenböschungen (längerfristig wiederherstellbar)</td>
<td>Fallung und nachfolgend Überschüttung / Auf- und Abtrag bzw. Versiegelung: 5,116 / 5,670 ha</td>
<td></td>
</tr>
<tr>
<td>Biotope auf feuchten Standorten</td>
<td>Überschüttung / Auf- und Abtrag bzw. Versiegelung: 0,055 ha</td>
<td></td>
</tr>
<tr>
<td>Baubedingte Projektwirkungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Längerfristig wiederherstellbare Biotope / Biotopyten gemäß LfU</td>
<td>Trotz Einrichtung von Biotopschutzzäunen zur Abgrenzung des Baufeldes (vgl. Maßnahme 2.2 V) vorübergehende Flächeninanspruchnahme im Bereich von nur längerfristig wiederherstellbaren, naturnahen Gehölzstrukturen: insg. ca. 3,916 ha.</td>
<td></td>
</tr>
<tr>
<td>Wirkfaktor</td>
<td>Betroffener Bestand</td>
<td>Eingriff / Umfang der Wirkung/ Betroffenheit</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Betriebsbedingte Projektwirkungen

<table>
<thead>
<tr>
<th>Schadstoffimmissionen</th>
<th>Biotopstrukturen</th>
<th>Pauschal erfasste Neubeeinträchtigung durch Verschiebung der mittelbaren Beeinträchtigungszonen (50 m ab Fahrbahnränder): ca. 0,669 ha neu beeinträchtigte Bereiche bei Vegetationsstrukturen mit Biotopstatus.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lärm</td>
<td>Avifauna</td>
<td>Keine nachteilige Veränderung im Umfeld zu erwarten.</td>
</tr>
<tr>
<td>Kollisionen mit Fahrzeugen</td>
<td>Avifauna, Fledermäuse</td>
<td>Keine signifikante Veränderung zu erwarten.</td>
</tr>
</tbody>
</table>

Tabelle 5: Schutzgut Tiere, Pflanzen, Biologische Vielfalt – Zusammenfassung der Beeinträchtigungen (Umweltauswirkungen)
5.3 Schutzgut Boden

Bestand

Umweltauswirkungen

<table>
<thead>
<tr>
<th>Wirkfaktor</th>
<th>Betroffener Bestand</th>
<th>Eingriff</th>
<th>Umfang der Wirkung/Betroffenheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anlagebedingte Projektwirkungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktionsverluste durch Versiegelung und Überbauung</td>
<td>Offenlandböden ohne spezifische Funktionen (Böden der landwirtschaftlichen Flur, im Randbereich von Siedlungsflächen bzw. im bestehenden Trassenbereich der A 3)</td>
<td>Neuversiegelung</td>
<td>12,350 12,352 ha</td>
</tr>
<tr>
<td>Boden unter Wald</td>
<td>Neuversiegelung</td>
<td>0,049 ha</td>
<td></td>
</tr>
<tr>
<td>Boden feuchter Standorte Aubachgrabensystem</td>
<td>Neuversiegelung</td>
<td>0,001 ha</td>
<td></td>
</tr>
<tr>
<td>Boden unter Wald</td>
<td>Überschüttung, Auf- und Abtrag</td>
<td>0,256 ha</td>
<td></td>
</tr>
<tr>
<td>Boden feuchter Standorte Aubachgrabensystem</td>
<td>Überschüttung, Auf- und Abtrag</td>
<td>0,054 ha</td>
<td></td>
</tr>
<tr>
<td>Funktionsgewinn durch Entsiegelung</td>
<td>bestehende Versiegelungen</td>
<td>Umwandlung in Grünflächen/Straßenkante</td>
<td>2,830 ha</td>
</tr>
<tr>
<td>Netto-Neuversiegelung (Neuversiegelung minus Entsiegelung):</td>
<td></td>
<td></td>
<td>$\sum 9,570$ 9,572 ha</td>
</tr>
<tr>
<td>Funktionsverlust Boden durch Überbauung: Boden unter Wald nasse Böden (mit biotische Standortfunktion)</td>
<td></td>
<td></td>
<td>$\sum 0,256$ ha $\sum 0,054$ ha</td>
</tr>
</tbody>
</table>

Tabelle 6: Schutzgut Boden – Zusammenfassung der Beeinträchtigungen (Umweltauswirkungen)

Veränderungen hinsichtlich der Schadstoffbelastung im trassennahen Bereich der bestehenden A 3, die sich durch den Ausbau ergeben können, sind im Vergleich Situation ohne Ausbau nicht als erheblich einzustufen. Die Reinigung des

5.4 Schutzgut Wasser

Bestand

Die Donauaue weist ursprünglich niedrige Grundwasserflurabstände auf. Durch Bebauung und Entwässerung sind die Grundwasserstände jedoch nicht mehr ursprünglich, d. h. in der Regel ist nur noch eine generelle Bedeutung von unversiegelten Böden hinsichtlich Versickerung und Grundwasserneubildung gegeben. Eine besondere Bedeutung der Flächen hinsichtlich Grundwasserfunktion weisen die anthropogen entstandenen bzw. veränderten Böden im Eingriffsbereich mit bestehenden Vorbelastungen durch betriebsbedingte Schadstoffeinträge entlang der bestehenden Autobahn nicht auf.

Im Stadtgebiet von Regensburg östlich der Landshuter Straße quert die Autobahntrasse den Bereich, in dem das Aubachgrabensystem verläuft und in dem Überschwemmungsgebietsgrenzen berechnet für ein hundertjähriges Hochwasserereignis ausgewiesen sind (rechtlicher Status im Februar 2014 als „vorläufig gesichert“ bzw. „vorläufig ermittelt“). Hinsichtlich biotischer Standortfunktion (Entwicklung Biotope auf feuchten Standorten) besitzen Bereiche der nassen Böden an Gräben bzw. auf feuchten Standorten des Aubach-/Augrabengewässersystems Bedeutung.

Umweltauswirkungen

Durch die Versiegelung geht Fläche für die Versickerung verloren. Flächen mit besonderer Bedeutung für die Grundwasserneubildung sind jedoch nicht betroffen.

Bestehende Versickerungsschächte und Versickerungszisternen werden aufgrund mangelnder Reinigungsleistung und einer bislang direkten Einleitung ins Grundwasser zurückgebaut. Durch den Bau von Absetzbecken mit Regenrückhaltebecken werden Schadstoffbelastungen reduziert. Anstelle der Einleitung in den Mischwasserkanal der Universitätsstraße wird ein großes Becken mit ca. 5.000 m³ Rückhaltevolumen im Bereich der nördlichen Auffahrtsrampe bei der AS Burgweinting geplant. Das Regenrückhaltebecken ist auf ein 10-jähriges Starkwetterereignis ausgelegt und kann auch bei einem HW 100 (höchster Wasserstand, der statistisch einmal in 100 Jahren auftritt) der Donau, weiter gedrosselt werden. Dadurch wird erreicht, dass der mit dem Sielbauwerk bei Irl festgelegte HW 100 Wasserstand nicht negativ beeinflusst wird.

5.5 Schutzgut Luft und Klima

Bestand

Die Gehölzbestände auf Straßenböschungen besitzen durch Deposition, Sedimentation und Gas austausch eine generelle, lokale bioklimatisch wirksame Funktion.

Der Waldbestand „Eltheimer Hölzl“ im Bereich der geplanten Betriebsumfahrung östlich der AS Rosenhof besitzt gemäß Waldfunktionskarte des Waldfunktionsplans Bedeutung für den regionalen Klimaschutz

Umweltauswirkungen

Der vorübergehende Verlust von Straßenbegleitgehölzen bedingt keine nachhaltigen Beeinträchtigungen. Die Straßenbegleitgehölze besitzen zwar eine gewisse lokalklimatische, abschirmende Wirkung für angrenzende Lebensräume, da sie der Deposition und Sedimentation von Schadstoffen an den Straßen dienen, die Funktionen werden jedoch durch Neupflanzungen mittelfristig wieder hergestellt (Maßnahme 9.5 G).

5.6 Schutzgut Landschaft

Bestand

Der Waldbestand „Eltheimer Hölzl“ im Bereich der geplanten Betriebsumfahrung östlich der AS Rosenhof besitzt gemäß Waldfunktionskarte des Waldfunktionsplans Bedeutung für das Landschaftsbild.

Umweltauswirkungen

Die Vorhabenseingriffe finden in vorbelasteten Bereichen angrenzend bzw. im Umfeld der bestehenden Autobahntrasse statt. Die Rodung bestehender Straßenbegleitgehölze bedingt, trotz Vorbelastungen, den vorübergehenden Verlust von Straßenbegleitgrün, das auf den neu zu gestaltenden Böschungen und Straßenbenebenflächen Straßenbegleitgehölze wiederhergestellt wird.

Für die in das UG reichenden Waldflächen mit Bedeutung für das Landschaftsbild ist autobahnah ein Inanspruchnahme gegeben. Insgesamt wird Wald in einem Umfang von 0,302 ha gerodet. Der Eingriff wird durch Waldneugründung (vgl. Maßnahmen 7–8 W und 6–7 A) ausgeglichen. Der Umfang der Waldneugründung beträgt zusammen 0,302 ha, so dass dem Erhalt der Waldfunktionen
für das Landschaftsbild und somit der Sicherung des Waldes gemäß BayWaldG Rechnung getragen wird.

5.7 **Schutzgut Kulturgüter und sonstige Sachgüter**

Bestand

Bau- und Kunstdenkmäler liegen nicht im vorhabensbedingten Eingriffsbereich.

Bodendenkmäler sind im Bereich der Autobahntrasse als auch im Umfeld nachweislich bekannt bzw. es liegen Vermutungsflächen vor (im Trassenbereich selbst handelt es sich um die Bodendenkmäler Nr. D-3-7039-0260, D-3-7039-0259, D-3-7038-0412, D-3-6938-0970, D-3-6939-0027, D-3-7038-0314, D-3-7038-0393). Der vorhabensbedingt überplante Bereich befindet sich insgesamt auf einer siedlungsgünstigen Niederterrasse, so dass auch in zwischen den Bodendenkmälern befindlichen Flächen ebenso mit Bodendenkmälern zu rechnen ist (Schreiben des Bayerischen Landesamtes für Denkmalpflege vom 17.07.2013).

Umweltauswirkungen

5.8 **Wechselwirkungen**

Wechselbeziehungen zwischen den einzelnen Schutzgütern ergeben sich i. d. R. aus den abiotischen Faktoren von Boden, Wasserhaushalt und Klimabedingungen, welche die Grundlage für die biotischen Standortbedingungen (Schutzgut
Tiere, Pflanzen, biologische Vielfalt) als auch für die anthropogenen Nutzungen bilden.

5.9 Artenschutz

Zur Ermittlung und Darstellung der artenschutzrechtlichen Verbotstatbestände nach § 44 Abs. 1 i.V.m. Abs. 5 Bundesnaturschutzgesetz (BNatSchG) bezüglich der gemeinschaftsrechtlich geschützten Arten (alle europäischen Vogelarten, Arten des Anhangs IV FFH-Richtlinie), die durch das Vorhaben erfüllt werden können, wurde eine gesonderte Unterlage (spezielle artenschutzrechtliche Prüfung, Unterlage 19.1.3) erstellt.

Die artenschutzrechtliche Prüfung kommt zu dem Ergebnis, dass durch das Bauvorhaben trotz Berücksichtigung der getroffenen vorgezogenen Ausgleichs-(CEF-) und Vermeidungsmaßnahmen Verbotstatbestände nach § 44 BNatSchG für die Zauneidechse und die Schlingnatter erfüllt werden:

Hinsichtlich der Zauneidechse sind Straßenböschungen, Böschungen von Lärmschutzwällen und sonstige Straßennebenflächen mit Habitatfunktion im Ausbaurbereich insbesondere an der Südseite der A 3 durch ihre Lage im Baufeld weitgehend vom Eingriff betroffen. Im Rahmen der Baumaßnahme werden die Böschungen anteilig versiegelt. Auf überbauten Bereichen bzw. neu errichteten Lärmschutzwällen werden nach Abschluss der Bautätigkeit jedoch wieder neue Böschungen mit Lebensraumpotenzial für Zauneidechsen gestaltet. Um während der Bauzeit ein ausreichendes Angebot von Fortpflanzungs- und Ruhestätten für die Art zu gewährleisten, werden eingriffsnah zu betroffenen Habitatstrukturen Maßnahmen durchgeführt, die Ausweichlebensräume für Zauneidechsen während der Bauzeit bieten (Maßnahmenkomplex 3 A_{CEF}). Die Maßnahmen zur

Hinsichtlich der Schlingnatter sind potenzielle Habitatflächen in und an Gleisbereichen durch Erneuerung der Unterführung der Gleisanlagen der DB AG im Bereich zwischen Bau-km 497+580 und 497+760 vom Eingriff betroffen. Im Rahmen der Baumaßnahme werden Schotter und Randflächen durch Befahren und durch die Baustelleneinrichtungen verdichtet bzw. in ihrem Strukturnaufbau verändert (durch Baufeldfreimachung). Für die Art sind Ausweichmöglichkeiten in und an Gleisbereichen außerhalb des Baufeldes vorhanden. Auch Böschungen der
bestehenden Autobahn oder der bestehenden Lärmschutzwälle zählen zum potenziellen Lebensraum, zumal auf den Böschungen Eidechsen und ihre Entwicklungsfarben als bevorzugte Beutetiere der Schlingnatter vorkommen. Die Maßnahme zur Schaffung von Ausweichlebensräumen (Maßnahmenkomplex 3 ACEF) in Verbindung mit Zäunen zum Schutz der Ausweichlebensräume vor einem Be-fahren während der Bauzeit (Maßnahme 2.1 V) bewirkt einen Erhalt des Habi-
tatangebotes im räumlich-funktionalen Zusammenhang.

Trotz Vermeidungs- und CEF-Maßnahmen kann nicht vollständig ausgeschlos-
sen werden, dass Verbotstatbestände nach § 44 erfüllt sind. Die Baufeldfreiräu-
mung findet zum Schutz von Reptilien erst nach bzw. vor der Winterruhe, d.h. ab
dem 15. April Mitte Mai bzw. bis Mitte September statt (Maßnahme 1.2 V). Den-
noch kann witterungsabhängig und artspezifisch nicht ausgeschlossen werden, dass Schlingnattern durch Einsatz von Maschinen verletzt oder getötet werden. Bei den betroffenen Tieren handelt es sich zwar höchstens um Einzeltiere, aber auch bei einer Betroffenheit von Einzeltieren ist ein Verbotstatbestand nach § 44 BNatSchG gegeben. Eine Ausnahme von den Verboten des § 44 BNatSchG kann gemäß § 45 Abs. 7 Satz 1 u. 2 BNatSchG zugelassen werden, da zwingen-
de Gründe des überwiegend öffentlichen Interesses vorhanden sind, zu der Aus-
bauplanung keine zumutbare Alternative besteht und eine nachhaltige Ver-
schlechterung des Erhaltungszustandes der lokalen Population als auch des Er-
haltungszustandes auf Ebene der biographischen Region nicht gegeben ist. Über
die Vermeidungs- und CEF-Maßnahmen hinausgehende Kompensationsmaß-
nahmen zur Wahrung des Erhaltungszustandes sind nicht notwendig.

Für alle anderen Arten werden unter Berücksichtigung der getroffenen vor-
gezogenen Vermeidungsmaßnahmen keine Verbotstatbestände nach § 44
BNatSchG erfüllt:

Beim Rebhuhn, für welches eine Vermeidungsmaßnahme in Anhängigkeit von
Vorkommen und Habitateignung vorgesehen ist, handelt es sich um einen Bo-
denbrüter. Die geplanten Baufelder führen baubedingt zu Eingriffen in Lebens-
räume (Lebensräume mit Artnachweisen im Jahr 2013 auf Höhe Bau-km
503+000 bis 503+160 südlich der A3 und auf Höhe Bau-km 502+030 bis
502+180 nördlich der A3). Die Brutstandorte sind durch vorübergehende Inan-
spruchnahme betroffen. Die Flächen werden nach Errichtung der neuen bzw.
angepassten Lärmschutzwände wieder hergestellt (kurzfristige Wiederherstel-
 lungszeit durch Brache/Sukzession nach Aufhebung des Baufeldes). Da die be-
troffenen Baubereiche im Winter vor Baubeginn bereits einer Eignung als Brut-
platz entzogen werden (Maßnahme 1.3 V), werden Rebhühner andere Standorte im Gebiet aufsuchen (Ausweichmöglichkeiten im Umfeld) und eine Tötung oder Verletzung von Tieren ist nicht gegeben. Für Habitatflächen angrenzend an das Baufeld, die auch Ausweichfunktion hinsichtlich Brutstandorte besitzen, gilt, dass Schutzzäune während der Bauzeit errichtet werden, um ein unnötiges Befahren der offenen Flächen zu verhindern (Maßnahme 2.1 V).

Zur Vermeidung von Störungen bei Flügen und somit bei der Nahrungssuche der beim „Eltheimer Hölzl“ vorkommender Fledermäuse wird eine Bautätigkeit in den
Sommermonaten Mai - September zwischen 21 Uhr und 6 Uhr untersagt (Maßnahme 2.3 V).

5.10 **Natura 2000-Gebiete**

Im Umfeld des Bauvorhabens liegen keine Natura 2000-Gebiete. Demnach sind keine Auswirkungen auf FFH-Gebiete oder Vogelschutzgebiete (SPA) zu erwarten.

5.11 **Weitere Schutzgebiete**

Biotope:

Von den im UG aufgenommenen, gesetzlich geschützten Biotoptypen werden die Biotoptypen WA, WO, WH, WG, WX, WN, GH und VH (siehe Ziff. 3.1) von der Maßnahme beansprucht. Die betroffenen Biotopanteile sind auf Grund von Alter, Strukturausstattung und Standortbeschaffenheit kurz- oder längerfristig wiederherstellbar und die Beeinträchtigungen sind somit ausgleichbar.

Städtische Ausgleichsflächen:

Bannwald:

Bodendenkmäler:

6 Maßnahmen zur Vermeidung, Minderung und zum Ausgleich erheblicher Umweltauswirkungen nach den Fachgesetzen

6.1 Immissionsschutzrecht

6.1.1 Lärm

6.1.1.1 Grenzwerte

Nach der Verkehrslärmschutzverordnung (16. BImSchV) sind beim Bau oder einer wesentlichen Änderung von Straßen Lärmschutzmaßnahmen der Lärmschutzvorsorge erforderlich, wenn der Beurteilungspegel infolge des Straßenverkehrslärms an einem benachbarten Grundstück einen der folgenden Immissionsgrenzwerte überschreitet.

<table>
<thead>
<tr>
<th>Schutzkategorie</th>
<th>Tag [dB(A)]</th>
<th>Nacht [dB(A)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krankenhäuser, Schulen, Kurheime und Altenheime</td>
<td>57</td>
<td>47</td>
</tr>
<tr>
<td>reine und allgemeine Wohngebiete und Kleinsiedlungsgebiete</td>
<td>59</td>
<td>49</td>
</tr>
<tr>
<td>Kerngebiet, Dorfgebiet, Mischgebiet</td>
<td>64</td>
<td>54</td>
</tr>
<tr>
<td>Gewerbegebiet</td>
<td>69</td>
<td>59</td>
</tr>
</tbody>
</table>

Tabelle 7: Vorsorgegrenzwerte der 16. BImSchV

6.1.1.2 Rechtsgrundlagen

6.1.1.3 Berechnungsverfahren

Die Schallemissionspegel werden sowohl für die Tagzeit (6.00-22.00 Uhr) als auch für die Nachtzeit (22.00-6.00 Uhr) berechnet. Bei der Berechnung der Immissionen wird, ausgehend von den, über die Tagzeit bzw. die Nachtzeit gemittelten Schallemissionspegeln Lₘ,E (Tag) bzw. Lₘ,E (Nacht), für jeden Emittenten (Schallquelle) getrennt, der Beurteilungspegel am Immissionsort (IO) ermittelt (siehe Unterlage 17.1 T, Anlage 3).

Eingabegrößen für das Berechnungsprogramm sind die genauen Lagen und Höhen der Lärmquellen (Fahrbahnen der Autobahn), Abschirmungen (z.B. Lärmschutzwände und -wälle, Gebäude), Geländehöhen (z.B. Einschnittslagen, Dammlagen, Höhenrücken) und die Schallimmissionsorte (Fenster der Häuser).

Die Geländegeometrie wurde aus einer detaillierten Befliegungsauwertung der Autobahndirektion Südbayern entnommen. Die Lärmquelle (Autobahn) sowie die geplanten Abschirmungen (Lärmschutzwände, -wälle und Wall/Wandkombinationen) wurden aus der technischen Planung dreidimensional übernommen. Für die Berechnung wurden die Lagedaten der untersuchten Immissionsorte (Wohngebäude) der digitalen Flurkarte entnommen. Die First- und Traufhöhen wurden vom Landesvermessungsamt bezogen.

Bei der Berechnung der Immissionspegel wurde die Abschirmung durch Einschnitte, Lärmschutzwälle, Lärmschutzwände und Gebäude, die Lärmdämpfung des Geländes sowie Mehrfachreflektionen berücksichtigt. Die berechneten Beurteilungspegel gelten für leichten Mitwind vom Verkehrsweg zum Immissionsort und Temperaturinversion. Bei anderen Witterungsbedingungen und in Abständen ab etwa 100 m können deutlich niedrigere Schallpegel auftreten. Die berechneten Schallimmissionen liegen somit zugunsten der Betroffenen auf der sicheren Seite.

6.1.1.4 Bauliche Änderungen an bestehenden Verkehrswegen

Die baulichen Eingriffe an dem die A 3 kreuzenden Verkehrswegenetz führen zu keiner spürbaren Steigerung der Belästigung durch Verkehrslärm an der vorhandenen Wohnbebauung. Sie stellen weiterhin keine wesentliche Änderung im Sinne der 16. BImSchV dar und sind deshalb bei der Bemessung der Lärmschutzmaßnahmen nicht zu berücksichtigen.

6.1.1.5 Verkehrsstärken

Auf Basis der Verkehrsuntersuchung Großraum Regensburg aus dem Jahr 2005, der Auswertungen von Dauerzählstellen und ergänzenden Zählungen im Jahre

Die auf den einzelnen Straßenabschnitten prognostizierten Belastungen betragen für das Jahr 2030:

<table>
<thead>
<tr>
<th>A 3 Anschlussstelle</th>
<th>Prognose der Anschlussstellen DTV 2030 [Kfz/24Std.]</th>
<th>Prognose der Strecke DTV 2030 [Kfz/24Std.]</th>
<th>Prognose der Schwerverkehrsanteile tags [%]</th>
<th>Prognose der Schwerverkehrsanteile nachts [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS Sinzing</td>
<td>62.500</td>
<td>59.000</td>
<td>18,2</td>
<td>33,8</td>
</tr>
<tr>
<td>AK Regensburg</td>
<td>25.170</td>
<td>81.600</td>
<td>16,9</td>
<td>35,0</td>
</tr>
<tr>
<td>AS Reg.-Universität</td>
<td>23.000</td>
<td>79.600</td>
<td>17,4</td>
<td>35,9</td>
</tr>
<tr>
<td>AS Reg.-Burgweinting</td>
<td>25.000</td>
<td>78.500</td>
<td>16,9</td>
<td>35,6</td>
</tr>
<tr>
<td>AS Reg.-Ost</td>
<td>26.100</td>
<td>69.000</td>
<td>18,9</td>
<td>34,6</td>
</tr>
<tr>
<td>AS Neutraubling</td>
<td>14.400</td>
<td>58.100</td>
<td>21,6</td>
<td>37,5</td>
</tr>
<tr>
<td>AS Rosenhof</td>
<td>14.400</td>
<td>53.200</td>
<td>23,0</td>
<td>40,0</td>
</tr>
</tbody>
</table>

Tabelle 8: Prognosebelastung DTV 2030 der A 3 und der Anschlussstellen

6.1.1.6 Immissionspegel

In Unterlage 17.2 Anlage 2 sind die errechneten Immissionspegel für den Prognosenullfall (DTV 2030 ohne zusätzliche Lärmschutzmaßnahmen) und für den Prognosefall (DTV 2030 mit zusätzlichen Lärmschutzmaßnahmen) angegeben.

6.1.1.7 Dimensionierung der aktiven Lärmschutzmaßnahmen

Abwägung

Schallimmissionsberechnungen für die derzeitige örtliche Situation, d.h. unter Berücksichtigung der vorhandenen Abschirmeinrichtungen in Form von Wällen, Wänden bzw. deren Kombinationen sowie dem vorhandenen Fahrbahnbelag aus Splitt-Mastix-Asphalt mit $D_{10} = -2 \text{ dB(A)}$ haben gezeigt, dass die Grenzwerte der 16. BImSchV im Untersuchungsbereich teilweise weit überschritten werden, so dass zusätzliche Lärmschutzmaßnahmen erforderlich werden.
Bei der Planung dieser Lärmschutzmaßnahmen müssen sowohl schalltechnische, als auch städtebauliche und landschaftsplanerische sowie wirtschaftliche Aspekte berücksichtigt werden. Zum einen sind aus schalltechnischer Sicht möglichst hohe und lange Lärmschutzwände bzw. -wälle oder deren Kombination wünschenswert, zum anderen kann durch sehr hohe Wände eine zu hohe Verschattung und eine zu große optische Trennwirkung entstehen. Ebenso lässt sich die Abschirmwirkung von Lärmschutzwänden durch deren Verlängerung oder Erhöhung nicht beliebig vergrößern.

Der Bereich der schutzbedürftigen Bebauung ist in räumlich abgrenzbare Schutzabschnitte zu unterteilen. Abgrenzungen ergeben sich einerseits durch den Verkehrswege selbst, d.h. eine schutzbedürftige Bebauung beidseits einer Trasse repräsentiert immer mindestens zwei Schutzabschnitte, sowie andererseits durch größere unbebaute Flächen entlang einer Trasse. Andere Kriterien können auch die Schutzwürdigkeit (vgl. § 2 der 16. BImSchV) einer Bebauung, deren Geschoßigkeit oder auch der Abstand zum Verkehrsweg sein.

Im Ausbaubereich liegen folgende Schutzabschnitte vor:
1. Schutzabschnitt: AK Regensburg und Ziegetsdorf, nördl. der A 3
2. Schutzabschnitt: Pentling, südl. der A 3
3. Schutzabschnitt: Regensburg Neuprüll, nördl. der A 3
4. Schutzabschnitt: Graß, südl. der A 3
5. Schutzabschnitt: Regensburg Klinikum, südl. der A 3
6. Schutzabschnitt: Universität, nördl. der A 3
7. Schutzabschnitt: St. Vincent / Galgenberg Kasernenviertel, nördl. der A 3
8. Schutzabschnitt: Burgweinting, nördl. der A 3
9. Schutzabschnitt: Burgweinting, südl. der A 3
10. Schutzabschnitt: Irl, nördl. der A 3
11. Schutzabschnitt: Barbing, nördl. der A 3
12. Schutzabschnitt: Neutraubling, südl. der A 3
13. Schutzabschnitt: Unterheising, nördl. der A 3
14. Schutzabschnitt: Rosenhof, nördl. der A 3

Fahrbahnbeläge

Als aktive Lärmschutzmaßnahmen kommen an Straßenverkehrswegen als Fahrbahnbelag auch Lärmschutzbeläge in Frage. Da aus bau- und betriebstechnischen Gründen ein Wechsel der Beläge zwischen verschiedenen Schutzabschnitten nicht in Frage kommt, wurde in der schalltechnischen Untersuchung die Wirkung eines Lärmschutzbelages mit \(D_{SW} \) von - 5 dB(A) von Bau-km 491+640 bis Bau-km 504+735 auf einer Länge von 13,1 km untersucht.

Der Lärmschutzbelag mit Mehrkosten von rd. 6,4 Mio. € gegenüber dem bestehenden lärmmindernden Splittmastixasphalt reduziert die Anzahl der Schutzfälle tags von 1024-984 auf 281 263 (- 73.74%) und nachts von 4600 4497 auf 2612 2536 (-43.44 %).

Absorbierende Eigenschaft der Lärmschutzwände

Mit Ausnahme der transparenten Lärmschutzwände, wie z.B. auf der Brücke über die Gleisanlagen der DB AG von Bau-km 497+563 bis 497+792, werden alle Lärmschutzwände autobahnseitig hochabsorbierend ausgeführt. D.h. die Lärmschutzwände sind akustisch so konzipiert, dass neben der lärmschirmenden Wirkung, auch Reflexionen des Autobahnlärms so stark reduziert werden, dass diese keinen Einfluss auf die Immissionspegel der gegenüberliegende Bebauung haben.
Einige Lärmschutzwände werden auch anliegerseitig hochabsorbierend ausgeführt. Immer dann, wenn sich anliegerseitig Verkehrswege befinden, deren Schall an der Lärmschutzwand reflektiert werden könnte und dies zu einer Erhöhung der Immissionspegel führen würde, wird diese Reflexion durch die hochabsorbierende Eigenschaft der Lärmschutzwand so weit reduziert, dass diese keinen Einfluss auf die Immissionspegel der nebenliegenden Bebauung haben kann.

Nebenliegende Verkehrswege, die eine hochabsorbierende Eigenschaft der anliegerseitigen Lärmschutzwand erfordern sind:

- Am Zieget
- Franz-Josef-Strauß Allee
- Anschlussstellenrampen AS Regensburg-Universität
- Am Wall
- St2660

Für die Lärmschutzwände im Bereich der Verkehrswege Ortsstraße „Am Zieget“ und „Am Wall“ (siehe Querschnitte in Unterlage 14.2 Blatt 2) ist aus gestalterischen Gründen sowie im Bereich von Neuprüll (Bau-km 493+000 bis Bau-km 493+725) ist zur Minimierung der Verschattungswirkung ein jeweils 4 m bzw. 2 m hoher oberer Bereich in transparenter Ausführung vorgesehen. Im Bereich der Ortsstraße „Am Wall“ (siehe Querschnitt in Unterlage 14.2 Blatt 2) ist aus gestalterischen Gründen ein 2 m hoher oberer Bereich in transparenter Ausführung vorgesehen. Die transparente Ausführung bedingt, dass Reflexionen nicht absorbiert werden können. Die dadurch entstehenden Reflexionen sind in der Berechnung der Immissionspegel (Unterlage 17.1 T) berücksichtigt.

6.1.1.8 Schutzabschnitte

Trotz der hohen Schutzwirkung des vorgesehenen Lärmschutzbelages (siehe vorhergehenden Abschnitt) sind Lärmschutzwälle und -wände bzw. deren Kombinationen in Höhen von bis zu 14,0 m über der Gradienten der A 3 erforderlich.

Die Höhe der vorgesehenen Lärmschutzwälle und -wände bzw. deren Kombinationen wurden im Zuge der Variantenabwägung durch eine Schutzfallbetrachtung ermittelt. Die detaillierten Variantenuntersuchungen sind in Unterlage 17.1 T beschrieben.

Die beim 6-streifigen Ausbau vorgesehenen aktiven Lärmschutzmaßnahmen sind in den Lageplänen der Immissionsschutzmaßnahmen Unterlage 7 und den Höhenplänen der BAB Unterlage 6.1 dargestellt. Die Gebäude mit Anspruch dem
Gründe nach auf passiven Lärmschutz sind in der Unterlage 7 rot markiert und in dem Textteil der Unterlage 17.1 T näher beschrieben.

Nachfolgend werden die Variantenuntersuchungen der jeweiligen Schutzabschnitte erläutert:

1. Schutzabschnitt: AK Regensburg und Ziegetsdorf, nördl. der A 3

Dabei zeigte sich, dass insbesondere die Lärmeinwirkungen des Autobahnabschnitts westlich des Baubeginns in den Wohngebietsflächen beiderseits der Wolfsteinerstraße für eine Vielzahl der Grenzwertüberschreitungen verantwortlich sind.

Es wurden daher zusätzliche, aktive Schallschutzmaßnahmen mit einer gleichbleibenden Höhe über Gradiente (ü. Gr., siehe Unterlage 14.1) von 5,0 m westlich des Ausbauabschnitts im Bereich des Autobahnkreuzes Regensburg in die schalltechnische Variantenuntersuchung eingebunden und deren Abschirmwirkung in allen nachfolgenden Varianten des Schallschutzes im Ausbauabschnitt berücksichtigt. Derzeit weisen diese Schallschutzwände eine Höhe von 2,5 m ü. Gr. bzw. als Schallschutzwälle eine Höhe von ca. 3,0 m ü. Gr. entlang der Parallelfahrbahnen auf.

Um an den o. g. rund 1056 Schutzfällen ausschließlich mit aktiven Schallschutzmaßnahmen die Immissionsgrenzwerte einhalten zu können, wären Aufwendungen von rund 65 Mio. € erforderlich, die sich im Wesentlichen aus dem Bau eines ca. 800 m langen Tunnels sowie der Einhausung der nördlich Rampen von und zur A 93 und ergänzender Wänden und Wällen ergeben. Je gelösten Schutzfall ergeben sich daraus Kosten von ca. 61.500 €. Die Tunnellösung ist aufgrund der unverhältnismäßig hohen Kosten daher in nachfolgenden Variantentabellen nicht weiter dargestellt.
Im Rahmen der Prüfung auf Verhältnismäßigkeit und der technischen Realisierbarkeit wurden folgende Varianten für Lärmschutzmaßnahmen im Bereich des Einschnittes bis zur Straßenüberführung bei km 492+900 geprüft:

<table>
<thead>
<tr>
<th>Variante</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verkehr 2030, $D_{S\text{tO}} = -2$ dB(A), Lärmschutz wie im Bestand, parallel zur Straße „Am Zieget“ 3,0 m hohe Wand</td>
</tr>
<tr>
<td>2</td>
<td>Verkehr 2030, $D_{S\text{tO}} = -5$ dB(A), parallel zur Straße „Am Zieget“ 4,0 m hohe Wand (= bis zu 10,0 m über Gradiente A 3)</td>
</tr>
<tr>
<td>3</td>
<td>Verkehr 2030, $D_{S\text{tO}} = -5$ dB(A), parallel zur Straße „Am Zieget“ 6,0 m hohe Wand (= bis zu 12,0 m über Gradiente A 3)</td>
</tr>
<tr>
<td>4</td>
<td>Verkehr 2030, $D_{S\text{tO}} = -5$ dB(A), parallel zur Straße „Am Zieget“ 8,0 m hohe Wand (= bis zu 14,0 m über Gradiente A 3)</td>
</tr>
<tr>
<td>5</td>
<td>Verkehr 2030, $D_{S\text{tO}} = -5$ dB(A), am Fahrbahnrand der A 3 8,0 m hohe zur Fahrbahn hin gekröpfte Wand</td>
</tr>
<tr>
<td>6</td>
<td>Verkehr 2030, $D_{S\text{tO}} = -5$ dB(A), parallel zur Straße „Am Zieget“ 10,0 m hohe Wand (= bis zu 16,0 m über Gradiente A 3)</td>
</tr>
</tbody>
</table>

Tabelle 9: Lärmschutzvarianten Schutzabschnitt 1

- Lage der Bebauung am Autobahnkreuz mit mehreren Lärmsquellen
- enger Radius der A 3, wodurch sich die Länge mit Einwirkung auf die Bebauung erhöht
- sehr nahe Bebauung mit einem Abstand im Bestand von 40,0 m vom Fahrbahnrand der A 3 (künftig 30,0 m)
- hohe Einzelgebäude in unmittelbarer Nähe der A 3

Als Ergebnis der Variantenabwägung zeigte sich, dass mit Variante 4 das Verhältnis zwischen den Kosten für den aktiven Lärmschutz (rd. 3,9 Mio. €) und dem hierdurch erreichten Schutzzweck vertretbar ist. Bei dieser Variante verbleiben

2. Schutzabschnitt: Pentling, südl. der A 3

Im Rahmen der Prüfung auf Verhältnismäßigkeit und der technischen Realisierbarkeit wurden folgende Varianten für Lärmschutzmaßnahmen im Bereich des Einschnittes geprüft:

<table>
<thead>
<tr>
<th>Variante</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verkehr 2030, $D_{StO} = -2$ dB(A)</td>
</tr>
<tr>
<td>2</td>
<td>Verkehr 2030, $D_{StO} = -5$ dB(A), 20,0 m hohe Lärmschutzwand an der Böschungsoberkante des Einschnittes (= bis zu 27,5 m über Gradient der A 3), sog. Volllschutz</td>
</tr>
<tr>
<td>3</td>
<td>Verkehr 2030, $D_{StO} = -5$ dB(A)</td>
</tr>
<tr>
<td>4</td>
<td>Verkehr 2030, $D_{StO} = -5$ dB(A), 2,5 m hoher Lärmschutzwall an der Böschungsoberkante des Einschnittes (= bis zu 10,0 m über Gradient der A 3)</td>
</tr>
<tr>
<td>5</td>
<td>Verkehr 2030, $D_{StO} = -5$ dB(A), 4,5 m hoher Lärmschutzwall an der Böschungsoberkante des Einschnittes (= bis zu 12,0 m über Gradient der A 3)</td>
</tr>
<tr>
<td>6</td>
<td>Verkehr 2030, $D_{StO} = -5$ dB(A), 6,5 m hoher Lärmschutzwall an der Böschungsoberkante des Einschnittes (= bis zu 14,0 m über Gradient der A 3)</td>
</tr>
<tr>
<td>7</td>
<td>Verkehr 2030, $D_{StO} = -5$ dB(A), 8,5 m hoher Lärmschutzwall an der Böschungsoberkante des Einschnittes (= bis zu 16,0 m über Gradient der A 3)</td>
</tr>
</tbody>
</table>

Tabelle 10: Lärmschutzvarianten Schutzabschnitt 2

Im Schutzbereich Pentling können mit der Variante 4 alle Schutzfälle tags gelöst werden. Um alle Schutzfälle nachts zu lösen wäre eine Lärmschutzwand mit ca. 20,0 m Höhe über der Einschnittsböschung erforderlich. Die hierdurch entstehenden Kosten sind jedoch nicht vertretbar. Mit der Variante 4 wird die Anzahl
der Schutzfälle mit Überschreitung des Nachtgrenzwertes von 79 auf 38 mehr als halbiert. Ein weiteres Erhöhen der Lärmschutzanlagen weist nur noch eine gerin-ge Reduzierung der Anzahl an Grenzwertüberschreitungen bei steigenden Kos-
ten auf.

Als Ergebnis der Variantenabwägung zeigte sich, dass mit Variante 4 das Ver-

3. Schutzabschnitt: Regensburg Neuprüll, nördl. der A 3

Für den Bereich Neuprüll ergeben sich unter Berücksichtigung der Bestands-
lärmschutzwand Überschreitungen des Immissionsgrenzwertes der 16. BImSchV tags (hier: 59 dB(A)) an 261 Wohneinheiten, Überschreitungen des maßgeben-
Im Rahmen der Prüfung auf Verhältnismäßigkeit und der technischen Realisierbarkeit wurden folgende Varianten für Lärmschutzmaßnahmen geprüft:

<table>
<thead>
<tr>
<th>Variante</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verkehr 2030, $D_{SWO} = -2,\text{dB(A)}$, Lärmschutz wie im Bestand, Lärmschutzwand am Fahrbahnrand der A 3 2,6 m über Gradiente A 3</td>
</tr>
<tr>
<td>2</td>
<td>Verkehr 2030, $D_{SWO} = -5,\text{dB(A)}$, bis zu 14,0 m über Gradiente der A 3 hohe Lärmschutzwall/-wandkombinationen, sog. Vollschutz</td>
</tr>
<tr>
<td>3</td>
<td>Verkehr 2030, $D_{SWO} = -5,\text{dB(A)}$, bis zu 6,0 m über Gradiente der A 3 hohe Lärmschutzwall/-wandkombinationen</td>
</tr>
<tr>
<td>4</td>
<td>Verkehr 2030, $D_{SWO} = -5,\text{dB(A)}$, bis zu 8,0 m über Gradiente der A 3 hohe Lärmschutzwall/-wandkombinationen</td>
</tr>
<tr>
<td>5</td>
<td>Verkehr 2030, $D_{SWO} = -5,\text{dB(A)}$, bis zu 10,0 m über Gradiente der A 3 hohe Lärmschutzwall/-wandkombinationen</td>
</tr>
<tr>
<td>6</td>
<td>Verkehr 2030, $D_{SWO} = -5,\text{dB(A)}$, bis zu 12,0 m über Gradiente der A 3 hohe Lärmschutzwall/-wandkombinationen</td>
</tr>
<tr>
<td>7,5a</td>
<td>Verkehr 2030, $D_{SWO} = -5,\text{dB(A)}$, bis zu 10,0 m über Gradiente der A 3 hohe Lärmschutzwall/-wandkombinationen</td>
</tr>
<tr>
<td>8,5b</td>
<td>Verkehr 2030, $D_{SWO} = -5,\text{dB(A)}$, bis zu 10,0 m über Gradiente der A 3 hohe Lärmschutzwall/-wandkombinationen</td>
</tr>
<tr>
<td>9,6a</td>
<td>Verkehr 2030, $D_{SWO} = -5,\text{dB(A)}$, bis zu 12,0 m über Gradiente der A 3 hohe Lärmschutzwall/-wandkombinationen</td>
</tr>
<tr>
<td>10,6b</td>
<td>Verkehr 2030, $D_{SWO} = -5,\text{dB(A)}$, bis zu 12,0 m über Gradiente der A 3 hohe Lärmschutzwall/-wandkombinationen</td>
</tr>
</tbody>
</table>

Tabelle 11: Lärmschutzvarianten Schutzabschnitt 3

Bereits mit der Variante 4 (bis zu 8,0 m hohe Lärmschutzwall/-wandkombinationen) werden alle Schutzfälle tags gelöst. Die Anzahl der Schutzfälle nachts mit 159 von ursprünglich 778 sind bei vertretbaren Kosten jedoch noch deutlich reduzierbar. Bei Variante 9–6a (bis zu 12,0 m hohe Lärmschutzwall/-wandkombinationen) verbleiben lediglich 11 Schutzfälle nachts. Ein weite-
res Erhöhen reduziert, bei stark steigenden Kosten die Anzahl an Schutzfällen nachts kaum noch.

Als Ergebnis der Variantenabwägung zeigte sich, dass mit Variante 9–6a das Verhältnis zwischen den Kosten für den aktiven Lärmschutz (rd. 2,5 Mio. €) und dem hierdurch erreichten Schutzzweck vertretbar ist.

4. Schutzabschnitt: Graß, südl. der A 3

Mit der vorgesehenen Errichtung einer insgesamt ca. 1,2 km langen Zusammensetzung aus Lärmschutzwällen, -wänden und deren Kombination mit einer Höhe von 6,0 m über der Gradiente der A 3 südlich der A 3 sowie unter Berücksichtigung des Lärmschutzbelags berechnen sich im Bereich Graß Pegelminderungen von bis zu 12 dB(A). Die hier maßgebenden Immissionsgrenzwerte der 16. BlmSchV für Wohngebiete von 59 dB(A) am Tag bzw. 49 dB(A) in der Nacht werden an zwei Gebäuden überschritten, für Mischgebiete werden die maßgebenden Grenzwerte von 64 dB(A) am Tag bzw. 54 dB(A) in der Nacht an allen Gebäuden eingehalten. Nachdem das Ziel des „Vollschutzes“ mit den vorgesehenen Lärmschutzanlagen erreicht wird, erübrigt sich eine Variantenuntersuchung.

5. Schutzabschnitt: Regensburg Klinikum, südl. der A 3

6. Schutzabschnitt: Universität, nördl. der A 3

7. Schutzabschnitt: St. Vincent / Galgenberg Kasernenviertel, nördl. der A 3

Nördlich der A 3 ist zum Schutz des Kinderzentrums St. Vincent sowie des Wohngebiets am Galgenberg über der Gradiente der A 3 eine 6,0 m hohe Lärmschutzwand im Bereich der Galgenbergstraße sowie ein 6,0 m über der Gradiente der A 3 hoher Lärmschutzwall mit einer Länge von ca. 850 m vorgesehen. Im Bereich der Ausfahrtsrampe der Anschlussstelle Regensburg-Universität verringert der Lärmschutzwall von Bau-km 495+455 bis 495+195 seine Höhe über der Gradiente der A 3 von 6,0 auf 4,5 m. Anschließend wird weitere 170 m eine 2,0 m hohe Lärmschutzwand parallel zur Ausfahrt der Anschlussstelle Regensburg-Universität fortgesetzt, deren Abschirmkante von 4,5 auf 7,5 m über der Gradiente der A 3 ansteigt. Unter Berücksichtigung des Lärmschutzelags berechnen sich im Bereich des Kinderzentrums St. Vincent Pegelminderungen von bis zu 6 dB(A). Der für Sondergebiete maßgebende Immissionsgrenzwert der 16. BImSchV von 57 dB(A) wird zukünftig am Tag eingehalten, nachts von 47 dB(A) um bis zu 6 dB(A) überschritten. In den Wohngebieten westlich und östlich des Sondergebietes wird der maßgebende Immissionsgrenzwert der 16. BImSchV von 59 dB(A) zukünftig am Tag eingehalten, nachts von 49 dB(A) um bis zu 1 dB(A) überschritten. In den Wohngebieten östlich des Sondergebietes werden die Immissionsgrenzwerte der 16. BImSchV von 59 dB(A) am Tag und 49 dB(A) in der Nacht eingehalten.

8. Schutzabschnitt: Burgweinting, nördl. der A 3

Im Rahmen der Prüfung auf Verhältnismäßigkeit und der technischen Realisierbarkeit wurden folgende Varianten für Lärmschutzmaßnahmen geprüft:

<table>
<thead>
<tr>
<th>Variante</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verkehr 2030, $D_{SW0} = -2,\text{dB(A)}$</td>
</tr>
<tr>
<td>2</td>
<td>Verkehr 2030, $D_{SW0} = -5,\text{dB(A)}$, 10,0 m hohe Lärmschutzwand auf bestehendem 7,0 m hohen Wall (= bis zu 17,0 m über Gradiente der A 3), sog. Vollschutz</td>
</tr>
<tr>
<td>3</td>
<td>Verkehr 2030, $D_{SW0} = -5,\text{dB(A)}$</td>
</tr>
<tr>
<td>4</td>
<td>Verkehr 2030, $D_{SW0} = -5,\text{dB(A)}$, bestehender Lärmschutz an der A 3 mit bis zu 9,0 m über Gradiente und zusätzlicher Lärmschutzwand im Anschlussstellendreieck mit einer Höhe von 3,0 m</td>
</tr>
<tr>
<td>5</td>
<td>Verkehr 2030, $D_{SW0} = -5,\text{dB(A)}$, Erhöhung der bestehenden Lärmschutzwand/-wandkombination um 1,0 m</td>
</tr>
<tr>
<td>6</td>
<td>Verkehr 2030, $D_{SW0} = -5,\text{dB(A)}$, Erhöhung der bestehenden Lärmschutzwand/-wandkombination um 2,0 m</td>
</tr>
<tr>
<td>7</td>
<td>Verkehr 2030, $D_{SW0} = -5,\text{dB(A)}$, bestehender Lärmschutz an der A 3 mit bis zu 9,0 m über Gradiente und zusätzlicher Lärmschutzwand im Anschlussstellendreieck mit einer Höhe von 4,0 m</td>
</tr>
<tr>
<td>8</td>
<td>Verkehr 2030, $D_{SW0} = -5,\text{dB(A)}$, Erhöhung der bestehenden Lärmschutzwand/-wandkombination um 1,0 m und zusätzlicher Lärmschutzwand im Anschlussstellendreieck mit einer Höhe von 3,0 m</td>
</tr>
<tr>
<td>9</td>
<td>Verkehr 2030, $D_{SW0} = -5,\text{dB(A)}$, bestehender Lärmschutz an der A 3 mit bis zu 9,0 m über Gradiente und zusätzlicher Lärmschutzwand im Anschlussstellendreieck mit einer Höhe von 5,0 m</td>
</tr>
<tr>
<td>10</td>
<td>Verkehr 2030, $D_{SW0} = -5,\text{dB(A)}$, Erhöhung der bestehenden Lärmschutzwand/-wandkombination um 2,0 m und zusätzlicher Lärmschutzwand im Anschlussstellendreieck mit einer Höhe von 4,0 m</td>
</tr>
<tr>
<td>11</td>
<td>Verkehr 2030, $D_{SW0} = -5,\text{dB(A)}$, Erhöhung der bestehenden Lärmschutzwand/-wandkombination um 3,0 m und zusätzlicher Lärmschutzwand im Anschlussstellendreieck mit einer Höhe von 4,0 m</td>
</tr>
</tbody>
</table>

Nachfolgende Varianten berücksichtigen einen Abbruch der bestehenden Wall/-Wandkombination und einen Neubau im Mittel ca. 5 m näher am Fahr- bahnrand der A 3.
Tabelle 12: Lärmschutzvarianten Schutzabschnitt 8

<table>
<thead>
<tr>
<th>Variante</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Neubau einer 12,0 m sowie 15,0 m hohen Lärmschutzwall/-wandkombination und zusätzliche Lärmschutzwand im Anschlussstellendreieck mit einer Höhe von 10,0 m, sog. Vollschutz</td>
</tr>
<tr>
<td>13</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Neubau eines 7,0 m hohen Lärmschutzwalles sowie einer 9,0 m hohen Lärmschutzwall/-wandkombination und zusätzliche Lärmschutzwand im Anschlussstellendreieck mit einer Höhe von 4,0 m</td>
</tr>
<tr>
<td>14</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Neubau eines 7,0 m hohen Lärmschutzwalles sowie einer 11,0 m hohen Lärmschutzwall/-wandkombination und zusätzliche Lärmschutzwand im Anschlussstellendreieck mit einer Höhe von 4,0 m</td>
</tr>
<tr>
<td>15</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Neubau einer 9,0 m sowie 11,0 m hohen Lärmschutzwall/-wandkombination und zusätzliche Lärmschutzwand im Anschlussstellendreieck mit einer Höhe von 4,0 m</td>
</tr>
<tr>
<td>16</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Neubau einer durchgängig 11,0 m hohen Lärmschutzwall/-wandkombination und zusätzliche Lärmschutzwand im Anschlussstellendreieck mit einer Höhe von 4,0 m</td>
</tr>
<tr>
<td>17</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Neubau eines 7,0 m hohen Lärmschutzwalles sowie einer 9,0 m hohen Lärmschutzwall/-wandkombination und zusätzliche Lärmschutzwand im Anschlussstellendreieck mit einer Höhe von 4,0 m sowie 4,0 m hohe Mittelwand an der A 3 mit einer Länge von 950 m</td>
</tr>
<tr>
<td>18</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Neubau einer 9,0 m sowie 11,0 m hohen Lärmschutzwall/-wandkombination und zusätzliche Lärmschutzwand im Anschlussstellendreieck mit einer Höhe von 4,0 m sowie 6,0 m hohe Mittelwand an der A 3 mit einer Länge von 950 m</td>
</tr>
</tbody>
</table>

schutzwall/-wandkombinationen südlich der A 3 in ihrer Lage so gebaut wurde, dass ein 6-streifiger Ausbau möglich ist, ohne die Lärmschutzanlage zu verändern, bleibt die stark bewachsene Lärmschutzanlage unverändert bestehen. lediglich durch die Erhöhung der bestehenden Lärmschutzwall/-wandkombination die Zahl der Schutzfälle kaum weiter reduziert werden kann. Durch den Abbruch der bestehenden Lärmschutzwall-/Wandkombination und einen Neubau im Mittel ca. 5 m näher am Fahrbahnrand der A 3 ergeben sich, bei noch vertretbaren Kosten, erhebliche Lärmminderungseffekte.

Mit der vorgesehen Variante 7–15 verbleiben 292-131 von ursprünglich 515 Schutzfällen nachts. In diesem Schutzbereich ist es bei wirtschaftlich vertretbaren Kosten nicht möglich alle Nachtgrenzwerte einzuhalten, da mehrere negative Einflussfaktoren vorliegen:

- Lage der Bebauung an der Anschlussstelle
- sehr nahe Bebauung mit einem Abstand im Bestand von ca. 50,0 m vom Fahrbahnrand der A 3
- hohe Einzelgebäude (E+8: Erdgeschoß + 8 Stockwerke)

Die Varianten 8 bis 11, 17 und 18 weisen durch die Anlage einer 950 m langen Mittelwand noch Möglichkeiten zur Reduktion der Schutzfälle nachts auf, die Kosten steigen jedoch von ca. 3.990 € auf 6.480 € pro gelösten Schutzfall erheblich. nur noch eine geringe Reduktion der Anzahl an Schutzfällen nachts bei deutlich steigenden Kosten auf.

Als Ergebnis der Variantenabwägung zeigte sich, dass mit Variante 7–15 das Verhältnis zwischen den Kosten für den aktiven Lärmschutz (rd. 1,0–2,1 Mio. €) und dem hierdurch erreichten Schutzzweck vertretbar ist.

9. Schutzabschnitt: Burgweinting, südl. der A 3

Im Bereich Burgweinting südl. der A 3 weisen die bestehenden Lärmschutzwall/-wandkombinationen eine Höhe von ca. 10,0 m über Gradiente der A 3 auf. Durch die bestehenden Lärmschutzanlagen werden an der schutzbefürchtigen Wohnbebauung sowohl die Tag- als auch die Nachtgrenzwerte der 16. BImSchV eingehalten.
9a. Schutzabschnitt: Altburgweinting, südl. der A 3

Daher wurden im Weiteren folgende Varianten untersucht:

<table>
<thead>
<tr>
<th>Variante</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verkehr 2030, $D_{StO} = -2 \text{ dB(A)}$</td>
</tr>
<tr>
<td>2</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Erhöhung der bestehenden 7,0 m hohen Lärmschutzwand auf 10,0 m und Neubau einer 4,0 m hohen Lärmschutzwand auf kompletter Länge des Bahnbauwerks BW59, sog. Volllschutz</td>
</tr>
<tr>
<td>3</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Erneuerung der bestehenden 7,0 m hohen Lärmschutzwand, Tekturlösung vom 30.11.2015</td>
</tr>
<tr>
<td>4</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Erhöhung der bestehenden 7,0 m hohen Lärmschutzwand auf 9,0 m</td>
</tr>
<tr>
<td>5</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Erneuerung der bestehenden 7,0 m hohen Lärmschutzwand und Neubau einer 1,0 m hohen Lärmschutzwand auf kompletter Länge des Bahnbauwerks BW59</td>
</tr>
<tr>
<td>6</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Erneuerung der bestehenden 7,0 m hohen Lärmschutzwand und Neubau einer 2,0 m hohen Lärmschutzwand auf kompletter Länge des Bahnbauwerks BW59</td>
</tr>
<tr>
<td>7</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Erneuerung der bestehenden 7,0 m hohen Lärmschutzwand und Neubau einer 3,0 m hohen Lärmschutzwand auf kompletter Länge des Bahnbauwerks BW59</td>
</tr>
<tr>
<td>8</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Erneuerung der bestehenden 7,0 m hohen Lärmschutzwand und Neubau einer 4,0 m hohen Lärmschutzwand auf kompletter Länge des Bahnbauwerks BW59</td>
</tr>
<tr>
<td>9</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Erneuerung der bestehenden 7,0 m hohen Lärmschutzwand und Neubau einer 5,0 m hohen Lärmschutzwand auf kompletter Länge des Bahnbauwerks BW59</td>
</tr>
<tr>
<td>10</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Erhöhung der bestehenden 7,0 m hohen Lärmschutzwand auf 9,0 m und Neubau einer 2,0 m hohen Lärmschutzwand auf kompletter Länge des Bahnbauwerks BW59</td>
</tr>
<tr>
<td>11</td>
<td>Verkehr 2030, $D_{StO} = -5 \text{ dB(A)}$, Erhöhung der bestehenden 7,0 m hohen Lärmschutzwand auf 9,0 m und Neubau einer 4,0 m hohen Lärmschutzwand auf kompletter Länge des Bahnbauwerks BW59</td>
</tr>
</tbody>
</table>

Tabelle 13a: Lärmschutzvarianten Schutzabschnitt 9a

Als Ergebnis der Variantenabwägung zeigte sich, dass mit Variante 8 das Verhältnis zwischen den Kosten für den aktiven Lärmschutz (rd. 0,7 Mio. €) und dem hierdurch erreichten Schutzzweck vertretbar ist. Bei dieser Variante werden alle

Als Ergebnis zeigt sich, dass mit Variante 8 das Verhältnis zwischen den Kosten für den aktiven Lärmschutz (rd. 0,7 Mio. €) und dem hierdurch erreichten Schutzzweck vertretbar ist.
10. Schutzabschnitt: Irl, nördl. der A 3

Mit der vorgesehenen Errichtung eines insgesamt ca. 750 m langen Schallschutzwalls mit einer Höhe von 7,0 m westlich der Eisackerstraße bzw. 6,0 m und anschließend 4,0 m östlich davon sowie unter Berücksichtigung des Lärmschutzbelags berechnen sich in Irl Pegelminderungen von 2 bis maximal 5 dB(A). Die hier maßgebenden Grenzwerte der 16. BImSchV von 64 dB(A) am Tag bzw. 54 dB(A) in der Nacht werden an allen Gebäuden eingehalten. Somit ist mit den vorgeschlagenen Lärmschutzmaßnahmen bereits ein Vollschutz erreicht.

11. Schutzabschnitt: Barbing, nördl. der A 3

Im Rahmen der Prüfung auf Verhältnismäßigkeit und der technischen Realisierbarkeit wurden folgende Varianten für Lärmschutzmaßnahmen geprüft:

<table>
<thead>
<tr>
<th>Variante</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verkehr 2030, D_{StrO} = -2 dB(A), bestehender 5,0 m hoher Wall</td>
</tr>
<tr>
<td>2</td>
<td>Verkehr 2030, D_{StrO} = -5 dB(A), 17,5 m hohe Lärmschutzwand/-wandkombination, sog. Vollschutz</td>
</tr>
<tr>
<td>3</td>
<td>Verkehr 2030, D_{StrO} = -5 dB(A), 5,5 m hoher Wall</td>
</tr>
<tr>
<td>4</td>
<td>Verkehr 2030, D_{StrO} = -5 dB(A), 7,5 m hohe Wall/-Wandkombination</td>
</tr>
<tr>
<td>5</td>
<td>Verkehr 2030, D_{StrO} = -5 dB(A), 9,5 m hohe Wall/-Wandkombination</td>
</tr>
<tr>
<td>6</td>
<td>Verkehr 2030, D_{StrO} = -5 dB(A), 11,5-11,0 m hohe Wall/-Wandkombination</td>
</tr>
</tbody>
</table>

Tabelle 13: Lärmschutzvarianten Schutzabschnitt 11

Als Ergebnis der Variantenabwägung zeigte sich, dass mit Variante 5,6 das Verhältnis zwischen den Kosten für den aktiven Lärmschutz (rd. 1,7-2,3 Mio. €) und dem hierdurch erreichten Schutzzweck vertretbar ist. Bei dieser Variante werden

12. Schutzabschnitt: Neutraubling, südl. der A 3

Im Rahmen der Prüfung auf Verhältnismäßigkeit und der technischen Realisierbarkeit wurden folgende Varianten für Lärmschutzmaßnahmen geprüft:

<table>
<thead>
<tr>
<th>Variante</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verkehr 2030, $D_{SWO} = -2$ dB(A), bestehender 5,25 m hohe Wall/-Wandkombination</td>
</tr>
<tr>
<td>2</td>
<td>Verkehr 2030, $D_{SWO} = -5$ dB(A), bis zu 19,0 m hohe Lärmschutzwall/-wandkombination, sog. Vollschutz</td>
</tr>
<tr>
<td>3</td>
<td>Verkehr 2030, $D_{SWO} = -5$ dB(A), bis zu 9,0 m hohe Lärmschutzwall/-wandkombination</td>
</tr>
<tr>
<td>4</td>
<td>Verkehr 2030, $D_{SWO} = -5$ dB(A), bis zu 11,0 m hohe Lärmschutzwall/-wandkombination</td>
</tr>
<tr>
<td>5</td>
<td>Verkehr 2030, $D_{SWO} = -5$ dB(A), bis zu 13,0 m hohe Lärmschutzwall/-wandkombination</td>
</tr>
<tr>
<td>6</td>
<td>Verkehr 2030, $D_{SWO} = -5$ dB(A), bis zu 15,0 m hohe Lärmschutzwall/-wandkombination</td>
</tr>
</tbody>
</table>

Tabelle 14: Lärmschutzvarianten Schutzabschnitt 12

Im Bereich Neutraubling (Gärtnersiedlung) werden bereits mit Variante 3 alle Schutzfälle tagsüber gelöst, nachts verbleiben noch 61 Schutzfälle. Durch eine weitere Erhöhung auf 11,0 m über Gradiente kann die Anzahl der Schutzfälle nachts noch deutlich auf 9 Schutzfälle reduziert werden. Eine weitere Erhöhung der Lärmschutzanlagen verringert die Anzahl der Schutzfälle nachts bei steigenden Kosten nur noch geringfügig.
Als Ergebnis der Variantenabwägung zeigte sich, dass mit Variante 4 das Verhältnis zwischen den Kosten für den aktiven Lärmschutz (rd. 3,8 Mio. €) und dem hierdurch erreichten Schutzzweck vertretbar ist.

13. Schutzabschnitt: Unterheising, nördl. der A 3
Mit der vorgesehenen Errichtung eines insgesamt ca. 850 m langen Lärmschutzwalls mit einer Höhe von 4,5 m über der Gradiente der A 3 sowie unter Berücksichtigung des Lärmschutzbeklags berechnen sich im Ortsteil Unterheising Pegelminderungen von maximal 6 dB(A). Die hier maßgebenden Grenzwerte der 16. BImSchV von 64 dB(A) am Tag bzw. 54 dB(A) in der Nacht werden an allen Gebäuden eingehalten.

14. Schutzabschnitt: Rosenhof, nördl. der A 3
Im Gewerbegebiet Rosenhof verbleiben an zwei Gebäuden mit Büronutzungen Überschreitungen des Immissionsgrenzwertes der 16. BImSchV nachts (hier: 59 dB(A)).

6.1.2 Schadstoffe in der Luft
6.1.2.1 Rechts- und Beurteilungsgrundlagen
Nach § 50 Bundesimmissionsschutzgesetz (BImSchG) sind bei raumbedeutsamen Planungen schädliche Umwelteinwirkungen auf die ausschließlich oder überwiegend dem Wohnen dienenden Gebiete sowie auf sonstige schutzbedürftige Gebiete möglichst zu vermeiden. Schädliche Umwelteinwirkungen im Sinne dieses Gesetzes sind Immissionen, die nach Art, Ausmaß oder Dauer geeignet sind, Gefahren, erhebliche Nachteile oder erhebliche Belästigungen für die Allgemeinheit oder die Nachbarschaft herbeizuführen (§ 3 BImSchG).

Konkretisiert wird die Rechtslage zur Luftschadstoffproblematik durch die Verordnung über Luftqualitätsstandards und Emissionshöchstmengen (39. BImSchV), die am 06. August 2010 in Kraft getreten ist. Die bisher geltende Verordnung über Immissionswerte für Schadstoffe in der Luft (22. BImSchV) wurde mit Inkrafttreten der 39. BImSchV aufgehoben.

In der 39. BImSchV sind Immissionsgrenzwerte für Luftschadstoffe definiert, die nach den Regelungen der §§ 2 bis 8 der 39. BImSchV einzuhalten sind und nicht überschritten werden dürfen.
6.1.2.2 **Grenzwerte**

Nach gegenwärtigem Wissenstand ist davon auszugehen, dass Stickstoffdioxide (NO\textsubscript{2}) und Partikel (Ruß, Abrieb, Staub) für die Beurteilung der Schadstoffbelastung von Anliegern an Straßen maßgebend sind.

Folgende Immissionsgrenzwerte aus der 39. BImSchV sind damit zum Schutz der menschlichen Gesundheit von besonderer Bedeutung:

<table>
<thead>
<tr>
<th>Schadstoffkomponente</th>
<th>Grenzwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stickstoffdioxid (NO\textsubscript{2})</td>
<td>40 µg/m3 im Jahresmittel</td>
</tr>
<tr>
<td></td>
<td>200 µg/m3 im Stundenmittel x)</td>
</tr>
<tr>
<td>Partikel (PM\textsubscript{10})</td>
<td>40 µg/m3 im Jahresmittel</td>
</tr>
<tr>
<td></td>
<td>50 µg/m3 im Tagesmittel xx)</td>
</tr>
<tr>
<td>Partikel (PM\textsubscript{2,5})</td>
<td>25 µg/m3 im Jahresmittel xxx)</td>
</tr>
</tbody>
</table>

x) Der Grenzwert darf im Kalenderjahr 18-mal überschritten werden.

xx) Der Grenzwert darf im Kalenderjahr 35-mal überschritten werden.

xxx) Der Grenzwert ist ab dem 01. Januar 2015 einzuhalten. Die Toleranzmarge beträgt 5 µg/m3. Sie verringert sich am 01. Januar 2009 jährlich um ein Siebtel.

Tabelle 15: Lufthygienische Grenzwerte für Stickstoffdioxid und Feinstaub

Maßgebend für die Höhe der Immissionsbelastungen sind, neben den Auswirkungen des Autobahnverkehrs, die im Planungsgebiet vorhandenen sonstigen Belastungen (Hintergrundbelastung) durch andere Emittenten (z.B. Hausbrand, Industrie, Gewerbe und sonstiges Straßennetz).

6.1.2.3 **Beurteilung und Berechnungsverfahren**

Damit können die Jahresmittelwerte aller relevanten Schadstoffe sowie die Anzahl der Überschreitungen der Stundenmittelwerte für Stickstoffdioxid (NO\textsubscript{2}) und der Tagesmittelwerte für Partikel (PM\textsubscript{10}) abgeschätzt werden.
Folgende Eingangsparameter sind für die lufthygienischen Berechnung nach RLuS 2012 erforderlich:

- verkehrsspezifische Daten: DTV [Kfz/24h], SV-Anteil [%], Prognosejahr
- straßenspezifische Daten: Anzahl der Fahrstreifen, Längsneigung, Straßenkategorie, Geschwindigkeitsbeschränkung, Straßenzustand
- Umgebungsdaten: Abstand der Immissionsorte von der Straße sowie Hintergrundbelastung
- Meteorologische Daten: Jahresmittelwert der Windgeschwindigkeiten 10 m über Grund
- ggf. Daten zur Abschirmung: Art und Abmessungen des geplanten Lärmschutzes

6.1.2.4 Erläuterung zur lufthygienischen Untersuchung

Im Vorfeld der lufthygienischen Untersuchung wurden die Anwendungsbedingungen für das Berechnungsverfahren nach RLuS 2012 geprüft. Diese werden eingehalten, so dass eine Beurteilung der Luftschadstoffbelastung auf Grundlage der zuvor genannten Richtlinien erfolgen kann.

Die Hintergrundbelastung für \(\text{NO}_2 \), \(\text{PM}_{10} \) und \(\text{PM}_{2.5} \) wurde auf Grundlage der kontinuierlichen Immissionsmessungen des Bayerischen Landesamtes für Umwelt (LfU) ermittelt. Die Werte für \(\text{NO}_2 \) und \(\text{PM}_{10} \) wurden anhand des Trends der Jahre 2006 - 2012 an den LÜB-Messstationen Schwandorf und München-Johanneskirchen ermittelt. Für alle anderen Luftschadstoffe wurden die gebietsotypischen Vorbelastungswerte für Großstadt „gering“ aus dem Anhang A, Tabelle A 1 der RLuS 2012 verwendet.

Die an jedem Immissionspunkt angesetzte Windgeschwindigkeit von 2,4 m/s in einer Höhe von 10 m über Grund wurde für das Beurteilungsgebiet aus dem Bayerischen Windatlas entnommen.

6.1.2.5 **Ergebnis der luftschadstofftechnischen Untersuchung**

In der luftschadstofftechnischen Untersuchung (siehe Unterlage 19.2) wurde die zukünftige verkehrsbedingte Schadstoffbelastung nach dem 6-streifigen Ausbau der A 3 zwischen dem AK Regensburg und der AS Rosenhof untersucht. Es zeigte sich, dass nach der 6-streifigen Erweiterung der A 3 die Grenzwerte der 39. BImSchV deutlich unterschritten werden. Die höchsten Luftschadstoffbelastungen liegen um mindestens 12 µg/m³ unterhalb den Immissionsgrenzwerten gemäß 39. BImSchV und betragen bis zu 25 µg/m³ für PM$_{10}$ und bis zu 28 µg/m³ für NO$_2$. Auch die maximal zulässige Überschreitungshäufigkeit des Tagesgrenzwertes von 35 Tagen im Jahr wird mit maximal 26 Überschreitungstagen zuverlässig eingehalten. Die Auswirkungen der Planung auf die lufthygienische Situation sind daher nicht erheblich.

6.2 **Maßnahmen in Wasserschutzgebieten**

Im Ausbaubereich liegen keine Wasserschutzgebiete vor.

6.3 **Landschafspflegerische Maßnahmen**

6.3.1 **Straßenbautechnische Vermeidungsmaßnahmen**

Straßenbautechnische Vermeidungsmaßnahmen sind Maßnahmen, die in den straßentechnischen Entwurf eingegangen sind:

Versiegelung und Überbauung

Im Bereich des AK Regensburg wurde bei der Gestaltung der Parallelfahrbahn bzw. der Verflechtungsbereiche auf einen möglichst geringen Flächenbedarf geachtet.

Auf der Südseite erfolgt ein richtlinienkonformer Ausbau mit Verflechtungstreifen und 10 m hoher Lärmschutzeinrichtung für Pentling. Die neue Kronenbreite der
A3 einschließlich der Parallelfahrbahn beträgt an dieser Stelle ca. 50 m. Nordseitig kann aufgrund der angrenzenden Bebauung kein richtlinienkonformer Ausbau erfolgen. Durch das Einziehen einer Spundwand kann entsprechender Platz für den Ausbau geschaffen und die bestehende Böschung gehalten werden.

Entwässerung

Die bisherigen Einleitungen in städtische Mischwasserkanäle werden, wo dies möglich ist durch Einleitungen in eine natürliche Vorflut ersetzt. Anstelle der Einleitung in den Mischwasserkanal der Universitätsstraße wird ein großes Becken mit ca. 5.000 m³ im Bereich der nördlichen Auffahrtsrampe bei der AS Burgweinting geplant. Dieses ist auf ein 10-jähriges Starkregenereignis ausgelegt und kann auch bei einem HW 100 der Donau, komplett geschlossen werden. Dadurch wird erreicht, dass der mit dem Sielbauwerk bei Irl festgelegte HW 100 Wasserstand unverändert bleibt.

Vorübergehende Inanspruchnahme

6.3.2 Naturschutzrechtliche Vermeidungsmaßnahmen (V-Maßnahmen)

Vermeidungsmaßnahmen bei der Durchführung dienen dem unmittelbaren Schutz vor temporären Gefährdungen während der Bauausführung (vgl. auch Unterlagen 9.2, 9.3 T und 9.4 T):

Maßnahmenkomplex 1 V: Vorgaben zur Baufeldfreimachung

Zur Vermeidung artenschutzrechtlicher Verbotstatbestände dienen folgende Vermeidungsmaßnahmen:

- **1.1 V**: Jahreszeitliche Beschränkung von Gehölzfällungen im gesamten Eingriffsbericht

 Um darüber hinaus artenschutzrechtlichen Vorgaben hinsichtlich Fledermäusen sicher nachzukommen, werden die zu fällenden Gehölze zudem vor Baubeginn nochmals hinsichtlich potenzieller Quartiereignung für Fledermäuse begutachtet. Potenzielle Quartierbäume in den Gehölzen entlang der Autobahn werden markiert und nur im Zeitraum Oktober entnommen. Die Fällungen der markierten fledermausrelevanten Bäume werden unter Anwesenheit eines Fledermausspezialisten durchgeführt, welcher die Stämme auf Fledermäusen vorkommen hin noch mal untersucht und eventuell vorhandene Tiere in Gewahrsam nimmt und in ein Ersatzquartier bringt bzw. dafür sorgt, dass Stammabschnitte mit nicht ausgeflogenen Tieren an einen geeigneten, sicheren Ort zur weiteren Überwinterung gebracht werden. Für den Waldbestand des Elheimer Hölzl gilt die Maßnahme 1.4 V.

- **1.2 V**: Vorgaben zur Baufeldfreiräumung für Offenlandstrukturen im gesamten Eingriffsbericht

 Die Baufeldfreimachung (Entfernung von Wurzelstöcken, Bodenabräumungen) und der Beginn von Baumaßnahmen auf offenen Böschungen sowie auf Flächen des Bahngeländes finden im Baujahr und bezogen auf den gesamten Eingriffsbericht nicht vor dem 15. April statt (Minderung von Eingriffen während der Winterstarre von Reptilien).

* Mitte Mai bzw. nach Mitte September
- 1.3 V: Vorgaben zur Baufeldfreiräumung für Lebensraumbereiche des Rebhuhns (auf Höhe Bau-km 503+000 bis 503+160 südlich der A 3 und auf Höhe Bau-km 502+030 bis 502+180 nördlich der A 3.

In Offenlandbereichen mit Habitatbeignung für das Rebhuhn erfolgt innerhalb des Baufeldes eine Beseitigung der Strukturen, die dem Rebhuhn als Nistplatz dienen könnten. D.h. im Winter vor Baubeginn werden die betroffenen Brach- bzw. Sukzessionsflächen innerhalb des Eingriffsbereichs auf Höhe Bau-km 503+000 bis 503+160 südlich der A 3 und auf Höhe Bau-km 502+030 bis 502+180 nördlich der A 3 in der Zeit von Oktober bis Februar gemäht und mit Schnittpflug bewachst.

Anmerkung: Im Frühsommer im Jahr vor Baubeginn ist noch mal eine Kontrolle der Offenlandbereiche zwischen Bau-km 501+500 und 505+500 hinsichtlich der dann wirklich bestehenden Habitatbeignungen für das Rebhuhn durchzuführen. Ggf. Anpassung hinsichtlich Lage der Maßnahmenflächen 1.2 V im Streckenbereich zwischen Bau-km 501+500 und 505+500

- 1.4 V: Jahreszeitliche Beschränkung der Fällung von fledermausrelevanten Bäumen im „Eltheimer Hölzl“

Maßnahmenkomplex 2 V: Vorgaben für die Bauzeit

- **2.1 V**: Schutzeinrichtungen zur Sicherung von Flächen mit Habitatfunktion

Um Beeinträchtigungen für Reptilien, insbesondere für die Zauneidechse zu vermeiden, werden die Strukturen mit Habitatbeignung angrenzend an Baustraßen und Baufelder durch einen Schutzzaun vom Befahren durch Baufahrzeuge sowie vermeidbarer vorübergehenden Inanspruchnahme ausgenommen. Zu den zu schützenden Flächen zählen insbesondere die Bereiche, in denen projektabhängige Maßnahmen zur Sicherung der kontinuierlichen ökologischen Funktionalität für Reptilien durchgeführt werden (Maßnahmenkomplex 3 A_CEF).

Um Beeinträchtigungen für das Rebhuhn zu vermeiden, werden die Offenlandbereiche mit Habitatbeignung für das Rebhuhn, die direkt an das Baufeld reichen, ebenfalls durch einen Schutzzaun vom Befahren durch Baufahrzeuge sowie vermeidbarer vorübergehenden Inanspruchnahme ausgenommen. Es handelt sich entsprechend den Kartierergebnissen um die Sukzessionsfläche auf Höhe Bau-km 502+030 bis 502+180 nördlich der A 3, d.h. angrenzend an die Baufeldfläche, für die die Vermeidungsmaßnahme 1.3 V vorgesehen ist (s.o.). Der Schutzzaun dient in diesem Bereich sowohl dem Schutz von Lebensraum für das Rebhuhn als auch dem Schutz von Habitatfläche für Reptilien.

- **2.2 V**: Biotopschutzzäune

Zur Vermeidung von Beeinträchtigungen empfindlicher Vegetationsbestände mit Biotopwert werden angrenzend zu den betroffenen Strukturen am Baufeldrand Schutzzäune errichtet.

- **2.3 V**: Zeitliche Begrenzung der täglichen Bauzeit für den Bau der Betriebsauffahrt auf Höhe Bau-km 507+200 im „Eltheimer Hölzl“

Für die Betriebsauffahrt auf Höhe Bau-km 507+200 finden keine Bautätigkeiten zwischen 21 und 6 Uhr in den in den Monaten Mai – September statt (d.h. keine Bautätigkeit während der feldermausrelevanten Aktivitätszeiten der Abend- und Nachtstunden).
6.3.3 Maßnahmenkonzept

Den Zielsetzungen übergeordneter Fachplanungen (Landesentwicklungsprogramm, Regionalplanung, Arten- und Biotopschutzprogramme, Regensburg-Plan, Landschaftspläne) entsprechend wurde als naturschutzfachliches Leitbild formuliert:

- **Erhöhung der Lebensraumvielfalt und Verbesserung der Biotopverbundsituation im Offenland**

- **Bewahrung der Auen an der Donau als naturnahe Gebiete der Region**
 Erhalt des Grünlandanteils und des Kleinreliefs im engeren Überschwemmungsbereich der Bäche und Flüsse in der Region Regensburg

- **Erhalt des Anteils standortgemäßer, naturnaher Laub- und Mischwälder**

- **Verbesserung der Grundwasser- und Bodenfunktion**
 Ermöglichen der Grundwasserneubildung und einer naturnahen Bodenentwicklung durch Nutzungsextensivierung.

- **Erhalt des Landschaftsbildes und der Erholungsfunktion**
 Erhalt bzw. Neugestaltung des Landschaftsbildes durch eine harmonische Einbindung des Bauwerks durch geeignete Gestaltungsmaßnahmen. Aufwer-
tung des Landschaftsbildes und der Erholungsfunktion in den betroffenen Landschaftsausschnitten durch die Multifunktionalität der Ausgleichsflächen Kompensationsmaßnahmen.

Von dem Bauvorhaben sind vorrangig betroffen:
- Straßenbegleitgehölze auf Autobahn-/Straßenböschungen,
- Offenland mit landwirtschaftlicher Nutzung, Siedlungsgrün,
- Säume an den Graswegen der landwirtschaftlich genutzten Flur sowie Saum- und Altgrasstrukturen auf Autobahn-/Straßenböschungen (einschließlich der Böschungen auf bestehenden Lärmschutzwällen).
- Gehölze und Feuchtvegetation an Gräben feuchter Standorte,
- Wald, kleinflächig (Randbereich des „Eltheimer Hölzl“).

Das Leitbild dient zur Ableitung von Maßnahmen, die geeignet sind, die ermittelten Konflikte / Eingriffe zu kompensieren.

Dem Grundsatz des hierarchischen Kompensationsansatzes folgend wurden Maßnahmen zur Kompensation der Habitatverluste bzw. Habitatminderung der betroffenen Arten entwickelt (artenschutzrechtliche Ausgleichsmaßnahme), Maßnahmen zur Kompensation von beeinträchtigten Biotopen, Lebensraumfunktionen, Funktionen von Boden und weiteren Schutzgütern (naturschutzfachliche Ausgleichsmaßnahmen aus der Eingriffsregelung) und letztendlich Maßnahmen zur Berücksichtigung der waldräumlichen Belange:

Der Maßnahmenkomplex 3 ACEF „Ausweichlebensräume Reptilien“ wurde entwickelt, um den artenschutzrechtlichen Ausgleich für vorübergehenden Lebensraumverlust von Reptilien, insbesondere der Zauneidechse, zu erbringen. Der Maßnahmenkomplex umfasst 14 Einzelmaßnahmen, die im räumlichen Kontext zum Eingriffsbereich stehen und durch die Lebensraum hinsichtlich Reptilien vor Beginn der Baumaßnahme aufgewertet wird.

bei Paring", 16 E „Hecke und Altfreiraum angrenzend zu ackerbaulicher Nut-
zung südlich der Laberaue, westlich der B 15n“, 17 E „Extensiv genutzt Fläche
am Waldrand südlich der AS Schierling-Süd, westlich der B15n“, 18 E „Extensiv
genutzt Fläche an einem Graben südlich der AS Schierling-Süd, westlich der
B15n“, 19 E „Gehölze und Altgresaum in der landwirtschaftlichen Flur bei
Mannsdorf, östlich der B 15n“, 20 E „Strukturreiche Fläche bei Allerdsdorf, west-
lisch der B 15n“ sowie die Maßnahmenkomplexe 14 E „Extensiv genutzt Flächen
in der Laberaue westlich der B 15n“ und 15 E „Extensiv genutzt Flächen in der
Laberaue östlich der B 15n“ dienen zur Kompensation der beeinträchtigten Bio-
topfunktionen von Offenlandlebensräumen gemäß § 15 BNatSchG. Die Maß-
nahmen dienen nicht allein dem Ausgleich von beeinträchtigten Biotopfunktionen.
Die Umwandlung intensiv landwirtschaftlich genutzter Flächen stellt auch für den
Boden eine Extensivierung dar. Langfristig wird die Entwicklung eines naturna-
hen Bodengefüges begünstigt und damit auch die Leistungsfähigkeit des Bodens
als Regler, Filter und Puffer verbessert. Durch die Nutzungsextensivierung wird
auch die Wasserfunktion hinsichtlich Wasseraufnahme, Retentionsvermögen und
Grundwasserbildung verbessert. Für das Landschaftsbild ergeben sich auf den
Maßnahmenflächen neue Strukturelemente, die zur landschaftlichen Vielfalt im
Gebiet beitragen.

Für die Offenlandmaßnahmen gilt:

- Es werden Flächen östlich des Universitätsklinikums / nordwestlich von
 Oberisling aus der intensiven landwirtschaftlichen Nutzung genommen (Flur-
 grundstücke 244, 245, 247, 247/1, 253, 254, 255, 256, 153/1, Gemarkung
 Oberisling, Stadt Regensburg, Ausgleichsflächen 4.1 A – 4.4 A). Auf den Flä-
 chen wird in Anteilen eine Wieseneinsaat mit extensiver Grünlandnutzung, ei-
 ne Altgresaummitgelenkter Sukzession durch alternierende Mahd
 sowie die Pflanzung von Gehölzriegeln und Obstbäumen durchgeführt. Dabei
 Schaffung von Kleinststrukturen wie Steinhaufen und –wälle, besonnte Wurzel-
 bereiche/ Gehölzhaufen, etc. zur Erhöhung der Lebensraumqualität für Repti-
 lien, Insekten und andere wärmeliebende Tier- und Pflanzenarten.
- Es wird eine Teilfläche des Flurstücks 209 Gemarkung Aubing, Gemeinde
 Barbing (Auszugsfläche 5 A) nördlich der A 3 am Ostrand des „Eltheimer
 Hözl“ angrenzend an neu zu gründenden Wald aus der intensiven landwirt-
 schaftlichen Nutzung genommen. Auf der Fläche wird eine Altgresaummit
 gelenkter Sukzession durch alternierende Mahd sowie die Pflanzung von
 Gehölzriegeln durchgeführt,

Agrarstrukturelle Belange gemäß § 15 Abs. 3 BNatSchG

Gesetzlich geschützte Biotope und bereits bestehende Ausgleichsflächen der Stadt Regensburg scheiden als Offenlandflächen für die Kompensationsanrechnung aus, so dass als Maßnahmenflächen landwirtschaftlich genutzte Flächen ohne Biotopstatus in Anspruch genommen werden müssen. Agrarstrukturelle Belange gemäß § 15 Abs. 3 BNatSchG wurden bei der Maßnahmenplanung dahingehend berücksichtigt, dass nach Möglichkeit Flächen mit ungünstigen Produkti-

6.3.4 Maßnahmenübersicht

Die einzelnen Maßnahmen sind in Unterlage 9.3 T (Maßnahmenblätter) beschrieben und in Unterlage 9.2 (Maßnahmenplan) dargestellt. Es sind Vermeidungs- (V), Ausgleichs- (A), Ersatz- (E) und Gestaltungsmaßnahmen (G) sowie eine waldrechtliche Maßnahme (W) vorgesehen:

<table>
<thead>
<tr>
<th>Maßnahmennummer</th>
<th>Kurzbeschreibung der Maßnahme</th>
<th>Dimension, Umfang</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 V</td>
<td>Jahreszeitliche Beschränkung von Baum- und Gehölzfällen im gesamten Eingriffsbereich</td>
<td>ca. 18.706 ha ca. 20.845 ha</td>
</tr>
<tr>
<td>1.2 V</td>
<td>Vorgaben zur Baufeldräumung für Offenlandstrukturen im gesamten Eingriffsbereich</td>
<td>n.q.</td>
</tr>
<tr>
<td>1.3 V</td>
<td>Vorgaben zur Baufeldfreimachung für Lebensraumbereiche des Rebhuhns (auf Höhe Bau-km 503+000 bis 503+160 Südseite und auf Höhe Bau-km 502+030 bis 502+180 Nordseite)</td>
<td>voraussichtlich 1.108 ha</td>
</tr>
<tr>
<td>1.4 V</td>
<td>Jahreszeitliche Beschränkung der Fällung von fiedermausrelevanten Bäumen im „Eltheimer Hözl“</td>
<td>n.q. (entsprechend vorhergehender Markierung potenzieller Quartierbäume)</td>
</tr>
</tbody>
</table>
Komplex 2 V

2.1 V	Schutzeinrichtungen zur Sicherung von Flächen mit Habitatfunktion	ca. 640 m
2.2 V	Biotopeinschließung	ca. 4.110 m
2.3 V	Zeitliche Begrenzung der täglichen Bauzeit für den Bau der Betriebseröffnung auf Höhe Bau-km 507+200 im „Eltheimer Hölz“	Bereich Bau Betriebsumfahrung

Ausgleichsmaßnahmen

Komplex 3 ACEF

<table>
<thead>
<tr>
<th>Ausweichlebensräume Reptilien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bau-km BAB A 3 (FR = Fahrtrichtung)</td>
</tr>
<tr>
<td>3.1 ACEF</td>
</tr>
<tr>
<td>3.2 ACEF</td>
</tr>
<tr>
<td>3.3 ACEF</td>
</tr>
<tr>
<td>3.4 ACEF</td>
</tr>
<tr>
<td>3.5 ACEF</td>
</tr>
<tr>
<td>3.6 ACEF</td>
</tr>
<tr>
<td>3.7 ACEF</td>
</tr>
<tr>
<td>3.8 ACEF</td>
</tr>
<tr>
<td>3.9 ACEF</td>
</tr>
<tr>
<td>3.10 ACEF</td>
</tr>
<tr>
<td>3.11 ACEF</td>
</tr>
<tr>
<td>3.12 ACEF</td>
</tr>
<tr>
<td>3.13 ACEF</td>
</tr>
<tr>
<td>3.14 ACEF</td>
</tr>
<tr>
<td>Komplex 4 A</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>4.1 A</td>
</tr>
<tr>
<td>4.2 A</td>
</tr>
<tr>
<td>4.3 A</td>
</tr>
<tr>
<td>4.4 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 A</th>
<th>Strukturreiche Offenlandfläche beim „Eltheimer Hölzl“ (anteilig Flurgrundstück 209, Gemarkung Auburg, Gemeinde Barbing) 0,877 ha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anrechenbar unter Berücksichtigung der Vorbelastung im autobahnnahe 50 m-Bereich: 0,818 ha (Kompensationsbedarf angerechnet: 0,787 ha)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6 A</th>
<th>Extensivgrünland an der Donau (Flurgrundstück 520, Gemarkung Geisling, Gemeinde Pfatter) 4,186 ha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Kompensationsbedarf angerechnet: 4,184 ha)</td>
</tr>
</tbody>
</table>

| 7 A | Waldneugründung beim „Eltheimer Hölzl“ (natur- und waldrechtlich) (anteilig Flurgrundstück 209, Gemarkung Auburg, Gemeinde Barbing) 0,046 ha |

| 8 W | Waldneugründung beim „Eltheimer Hölzl“ (waldrechtlich) (anteilig Flurgrundstück 209, Gemarkung Auburg, Gemeinde Barbing) 0,256 ha |

<table>
<thead>
<tr>
<th>Gestaltungsmassnahmen Komplex 9 G</th>
<th>Gestaltungsmassnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 G</td>
<td>Entwicklung von Flächen mit kurzer Grasnarbe durch Spontanbesiedlung, intensiv ca. 9,420 ha</td>
</tr>
<tr>
<td>9.2 G</td>
<td>Anlage von Landschaftsrasen, intensiv ca. 6,890 ha</td>
</tr>
<tr>
<td>9.3 G</td>
<td>Anlage von Landschaftsrasen, extensiv ca. 29,540 ha</td>
</tr>
<tr>
<td>9.4 G</td>
<td>Zulassen von Sukzession ca. 6,795 ha</td>
</tr>
<tr>
<td>9.5 G</td>
<td>Pflanzung von Hecken und Gebüschen ca. 6,239 ha</td>
</tr>
<tr>
<td>9.6 G</td>
<td>Pflanzung von Einzelbäumen 19 6 Bäume</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausgleichsmaßnahmen</th>
<th>Maßnahmen für Eingriff in städtische Ausgleichsmaßnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 A</td>
<td>Strukturreiche Offenlandfläche östlich des Augrabens (Flurgrundstück 328, Gemarkung Irl, Stadt Regensburg) 0,368 ha</td>
</tr>
<tr>
<td>11 A</td>
<td>Pflanzung von 45 Bäumen (auf Flurgrundstück 403/53 und 403/48, Gemarkung Burgweinting, Stadt Regensburg) 45 Bäume</td>
</tr>
</tbody>
</table>
Ersatzmaßnahmen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Beschreibung</th>
<th>Anrechenbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 E</td>
<td>Strukturreiche Offenlandfläche östlich des Benzerlohgrabens, östlich der B 15n (Flurgrundstück 3405/1, Gemarkung Schierling, Markt Schierling)</td>
<td>0,545 ha</td>
</tr>
<tr>
<td>13 E</td>
<td>Strukturreiche Offenlandfläche westlich der B 15n bei Paring (Flurgrundstück 3521/5, Gemarkung Schierling, Markt Schierling)</td>
<td>0,186 ha anrechenbar: 0,133 ha</td>
</tr>
<tr>
<td>Komplex 14 E</td>
<td>Extensiv genutzte Flächen in der Laberaue westlich der B 15n (im Überschwemmungsgebiet bzw. im wassersensiblen Bereich der Großen Laber) (Gemarkung Schierling, Markt Schierling)</td>
<td></td>
</tr>
<tr>
<td>14.1 E</td>
<td>Flurgrundstück 2738</td>
<td>0,404 ha anrechenbar: 0,394 ha</td>
</tr>
<tr>
<td>14.2 E</td>
<td>Flurgrundstück 2774</td>
<td>0,321 ha anrechenbar: 0,296 ha</td>
</tr>
<tr>
<td>14.3 E</td>
<td>Flurgrundstück 2743</td>
<td>0,426 ha anrechenbar: 0,388 ha</td>
</tr>
<tr>
<td>14.4 E</td>
<td>Flurgrundstück 2699</td>
<td>0,119 ha anrechenbar: 0,061 ha</td>
</tr>
<tr>
<td>14.5 E</td>
<td>Flurgrundstück 2698/1</td>
<td>0,381 ha anrechenbar: 0,241 ha</td>
</tr>
<tr>
<td>14.6 E</td>
<td>Flurgrundstück 2586</td>
<td>0,344 ha anrechenbar: 0,280 ha</td>
</tr>
<tr>
<td>14.7 E</td>
<td>Flurgrundstück 2601</td>
<td>0,255 ha anrechenbar: 0,254 ha</td>
</tr>
<tr>
<td>14.8 E</td>
<td>Flurgrundstück 2600</td>
<td>0,370 ha anrechenbar: 0,303 ha</td>
</tr>
<tr>
<td>14.9 E</td>
<td>Flurgrundstück 2603</td>
<td>0,591 ha anrechenbar: 0,504 ha</td>
</tr>
<tr>
<td>14.10 E</td>
<td>Flurgrundstück 2430/3</td>
<td>0,062 ha</td>
</tr>
<tr>
<td>14.11 E</td>
<td>Flurgrundstück 2566</td>
<td>0,358 ha</td>
</tr>
<tr>
<td>14.12 E</td>
<td>Flurgrundstück 2551/1</td>
<td>0,072 ha anrechenbar: 0,036 ha</td>
</tr>
<tr>
<td>14.13 E</td>
<td>Flurgrundstück 2550/1 und 2551</td>
<td>0,243 ha anrechenbar: 0,139 ha 0,058 ha anrechenbar: 0,029 ha</td>
</tr>
<tr>
<td>14.14 E</td>
<td>Flurgrundstück 2509</td>
<td>0,280 ha anrechenbar: 0,195 ha</td>
</tr>
<tr>
<td>14.15 E</td>
<td>Flurgrundstück 2507</td>
<td>0,081 ha nicht anrechenbar</td>
</tr>
</tbody>
</table>
Komplex 15 E

15,1 E	Flurgrundstücke 2698 und 2698/2	0,442 ha anrechenbar: 0,287 ha anrechenbar: 0,037 ha anrechenbar: 0,019 ha
15,2 E	Flurgrundstück 2588	0,311 ha anrechenbar: 0,212 ha
15,3 E	Flurgrundstück 2600/1	0,084 ha anrechenbar: 0,388 ha
15,4 E	Flurgrundstück 2610	0,262 ha anrechenbar: 0,148 ha
15,5 E	Flurgrundstück 2640	1,159 ha
15,6 E	Flurgrundstück 2513/1	0,119 ha anrechenbar: 0,060 ha
15,7 E	Flurgrundstück 2512	0,082 ha anrechenbar: 0,053 ha

16 E

| Hecke und Altgrassaum angrenzend zu ackerbaulicher Nutzung südlich der Laberaue, westlich der B 15n (Flurgrundstück 1639, Gemarkung Schierling, Markt Schierling) | 0,430 ha |

17 E

| Extensiv genutzt Fläche am Waldrand südlich der AS Schierling-Süd, westlich der B15n (Flurgrundstücke 1346 und 1346/5, Gemarkung Schierling, Markt Schierling) | 0,336 ha
anrechenbar: 0,262 ha
anrechenbar: 0,166 ha
anrechenbar: 0,124 ha |

18 E

| Extensiv genutzt Fläche an einem Graben südlich der AS Schierling-Süd, westlich der B15n (Flurgrundstück 1350, Gemarkung Schierling, Markt Schierling) | 0,584 ha |

19 E

| Gehölze und Altgrassaum in der landwirtschaftlichen Flur bei Mannsdorf, östlich der B 15n (Flurgrundstück 1561/2, Gemarkung Buchhausen, Markt Schierling) | 0,125 ha |

20 E

| Strukturreiche Fläche bei Allerdsdorf, westlich der B 15n (Flurgrundstück 1523, Gemarkung Buchhausen, Markt Schierling) | 2,283 ha |

Tabelle 16: Übersicht landschaftspflegerische Maßnahmen
6.3.5 Gesamtbeurteilung des Eingriffs

6.4 Maßnahmen zur Einpassung in bebaute Gebiete

6.5 Sonstige Maßnahmen nach Fachrecht

Gemäß Art. 5 i.V. m. Art. 7 BayWaldG ist Wald mit Schutz-, Nutz- und Erholungsfunktionen sowie Bedeutung für die biologische Vielfalt zu erhalten, zu mehren und zu gestalten, dass er seine jeweiligen Funktionen bestmöglich und nachhaltig erfüllen kann. Der durch das Bauvorhaben betroffen Wald des „Eltheimer Hölzl“ besitzt gemäß Waldfunktionskarte Bedeutung für das Landschaftsbild und
für den regionalen Klimaschutz. Die Waldflächen sind als Bannwald ausgewiesen.

Für den Bau der Betriebsauffahrt beim „Eltheimer Hölzl“ wird Wald in Anspruch genommen. Insgesamt wird Wald in einem Umfang von ca. 0,369 ha gerodet. Davon werden 0,067 ha vorübergehend während der Bauzeit in Anspruch genommen und anschließend als Wald renaturiert. Wald in einem Umfang von 0,302 ha geht dauerhaft verloren.

Die Maßnahmen zur Waldneugründung 6A 7A und 7W 8W beinhalten waldbauliche Maßnahmen und waldrechtliche Ersatzaufforstungen für Bannwald in einem Umfang von 0,302 ha. Gemäß Art. 9 Abs. 6 Ziff. 2 BayWaldG wird „angrenzend an den vorhandenen Bannwald ein Wald neu begründet, der hinsichtlich seiner Ausdehnung und seiner Funktion dem dauerhaft beanspruchten Waldflächen annähernd gleichwertig ist oder gleichwertig werden kann“.

Dem Erhalt der Waldfunktionen und der Sicherung des Waldes gemäß BayWaldG wird somit entsprochen.

7 Kosten
Kostenträger der Baumaßnahme ist die Bundesrepublik Deutschland (Bundesfernstraßenverwaltung), sofern im Regelungsverzeichnis keine anderen Festlegungen getroffen sind.

Die Kosten für die durch den Ausbau der A 3 veranlassten Maßnahmen an kreuenden Straßen, Wegen, Gewässern und anderen öffentlichen Einrichtungen sowie für erforderliche Schutz-, Ausgleichs- und Ersatzmaßnahmen trägt nach Maßgabe gesetzlicher Bestimmungen ebenfalls die Bundesrepublik Deutschland.

An den Kosten zur Änderung der bestehenden Kreuzung zwischen der A 3 und der St 2145 ist der Freistaat Bayern entsprechend § 12 FStrG Abs. 3 Satz 2 beteiligt.

Weitere Beteiligte sind die Leitungseigentümer gemäß den jeweiligen vertraglichen bzw. gesetzlichen Regelungen und der entsprechenden Folgekostenpflicht.

Weitere Einzelheiten und abweichende Regelungen sind Unterlage 11 (Regelungsverzeichnis) zu entnehmen.
8 Durchführung der Baumaßnahme

8.1 Bauzeit, Verkehrsfläche und Baustellenerschließung

Es ist vorgesehen, nach Vorliegen der planungsrechtlichen Voraussetzungen und der Bereitstellung der erforderlichen Haushaltsmittel umgehend mit dem Bau zu beginnen. Die Bauzeit wird, soweit die Unterführung der Gleisanlagen der DB AG vorab erneuert werden kann, mit vier Jahren veranschlagt.

Bei jeder Bauphase stehen dem Verkehr mind. vier Fahrstreifen, am Uniberg in Fahrtrichtung Nürnberg Bau-km 493 bis 496 mind. fünf Fahrstreifen zur Verfügung.

Die Erschließung des Baufeldes erfolgt überwiegend über die A 3 und teilweise über das vorhandene öffentliche Straßen- und Wegenetz.

In den Lageplänen (Unterlage 5.1) sind Baustelleneinrichtungsflächen markiert. Auf diesen Flächen ist mit Baubetrieb (Bürocontainer, Baustofflager und Maschinenpark) zu rechnen.

8.2 Gewässerüberleitung während der Bauzeit

8.3 Grunderwerb

Es wird angestrebt, den Grund freihändig zu erwerben.
Zusammenstellung der Gutachten und Untersuchungen

Abbildungsverzeichnis

Abbildung 1: RAA, Ausfahrtstyp A4 mit Spursubtraktion 28
Abbildung 2: RAA, Einfahrtstyp ER2 ... 29
Abbildung 3: RAA, Einfahrtstyp E5 mit Spuraddition 29
Tabellenverzeichnis

Tabelle 1: Kreuzende Straßen und Wege ... 7
Tabelle 2: Prognosebelastung DTV 2030 der A 3 und Vergleich DTV 2010 14
Tabelle 3: Übersicht der Entwurfselemente ... 27
Tabelle 4: Bauwerke im Ausbaubereich .. 44
Tabelle 5: Schutzgut Tiere, Pflanzen, Biologische Vielfalt – Zusammenfassung der Beeinträchtigungen (Umweltauswirkungen) ... 63
Tabelle 6: Schutzgut Boden – Zusammenfassung der Beeinträchtigungen (Umweltauswirkungen) .. 65
Tabelle 7: Vorsorgegrenzwerte der 16. BImSchV ... 75
Tabelle 8: Prognosebelastung DTV 2030 der A 3 und der Anschlussstellen 78
Tabelle 9: Lärmschutzvarianten Schutzabschnitt 1 .. 83
Tabelle 10: Lärmschutzvarianten Schutzabschnitt 2 .. 84
Tabelle 11: Lärmschutzvarianten Schutzabschnitt 3 .. 86
Tabelle 12: Lärmschutzvarianten Schutzabschnitt 8 ... 90
Tabelle 13: Lärmschutzvarianten Schutzabschnitt 11 ... 92
Tabelle 14: Lärmschutzvarianten Schutzabschnitt 12 ... 93
Tabelle 15: Lufthygienische Grenzwerte für Stickstoffdioxid und Feinstaub 95
Tabelle 16: Übersicht landschaftspflegerische Maßnahmen 111